来源:两江科技评论,作者:九乡河。
张力-扭转耦合超构材料 (TTCM),作为一种典型的力学超构材料,在承受拉伸/压缩载荷时表现出扭转变形,自由度超过柯西弹性。TTCM的微观结构保持固有构型并表现出宏观本构行为。然而,相互连接的微结构在运动学上相互限制和高度耦合,限制了潜在的变形并降低了超构材料的可重用性和可维护性。此外,TTCM的力学性能受微观结构的配置控制,这意味着TTCM的力学性能在制造后是固定的、不可逆的。
因此,TTCM受到弱拉-扭耦合效应、变形域窄和适应性差的限制。然而,来自于自然界仿生效应突破了这一局限性,如刺猬的刺有效缓冲冲击性能(约10米的高度坠落)。由于刺没有相互连接,一个刺的损坏不会影响其他刺,从而有效地防止进一步损坏。受到刺猬刺阵列模式的启发,像素力学超构材料被由一组未耦合的受约束个体(即机械像素)开发,表现出很大程度的设计自由度、模块化和配置/力学特性的多样性。
近日,哈尔滨工业大学冷劲松教授和刘立武教授团队将机械像素阵列设计、螺旋微结构和4D打印引入TTCM,为利用TTCM的变形潜力提供了新的策略。受胶原纤维构型和变形机制启发的螺旋韧带被引入3D手性TTCM,并去除TTCM中的高耦合自由度。所开发的机械像素具有可调性、可编程性和力学行为(应力-应变关系)的可重构性。获得了机械像素之间具有非耦合变形的像素力学超构材料,极大地丰富了配置的设计多样性和可维护性。展示了开发的像素力学超构材料在信息加密、运动学控制器、软体机器人和缓冲设备方面的应用前景。更有趣的是,由于像素力学超构材料出色的保护性能,落在约1米高度的像素力学超构材料上的鸡蛋仍然完好无损。相关研究发表在《Advanced Functional Materials》上。(徐锐)
参考文献:
X. Xin, L. Liu, Y. Liu, et al. 4D Pixel Mechanical Metamaterials with Programmable and Reconfigurable Properties[J]. Advanced Functional Materials, 2021.