首页/文章/ 详情

高速电机转子冲片的强度设计(二)—— 考虑转子轴与冲片过盈配合内应力的计算方法(上)

9月前浏览11757

、前言


在上节中,已借助ANSYS官方案例的原几何模型,建立了适合强度分析的薄片状简化的几何模型及有限元模型,并得出旋转离心力作用下冲片内应力的基本规律。


由于离心力是径向向外的,受力状态较为简单,且由于离心力随线速度的平方关系规律,将主要对冲片隔磁桥附近的局部应力,影响较为明显。一般为径向隔磁桥受拉伸,外圈的周向隔磁桥受弯曲。其强度设计的难度相对较低。


某些电机产品中,还需考虑冲片与轴过盈配合引起的内应力。其主要为从冲片内孔,向圆周的环向,存在拉伸应力,且影响范围较大,强度设计的难度更高。当其与离心力组合作用后,冲片内应力的分布规律,会变得更为复杂,以至于更不易控制。


过盈配合,即依靠轴与孔的过盈量,在装配后使零件表面间产生弹性压缩摩擦力,以实现紧固联接的一种连接设计形式。一般用于电机转子与冲片间的摩擦连接,以抵抗扭矩等外载。


过盈配合的处理方式一般有以下几种:


1、对于手工计算而言,可借助《机械设计手册》或相关设计规范的算法,进行简化计算;


2、对于强度仿真而言,可采用带有初始缺陷及几何干涉的几何模型+摩擦接触+在接触中闭合间隙的方法;或完美几何+摩擦接触+接触偏置的方法等,实现过盈效果。


前者一般适用于密封条的压紧装配过程等,拥有较大初始过盈量的非线性大变形情况,或对过盈压装过程的模拟等。在电机转子冲片强度性能开发中,过盈量相对总体尺寸而言极小,且为探索内应力的极限范围,一般需反复多次调整过盈量进行计算,以及一般应保证过盈贴合面附近,处于小变形、线弹性、不超过材料屈服强度等要求的范围内。如采用后者的解决方案,只需建立一次几何模型,有利于提高综合计算效率;


3、对于制造而言,过盈效果的实现,有压装、热装、冷装、锥孔螺栓拉紧等四种常用方法。在新能源汽车电机上,常采用热装或压装的方式。而配过程与临界压装力的仿真计算方法,将在本文后续章节中进行专题介绍;


4、对于实验而言,一般采用准静态扭转或准静态的轴向推力逐渐加载的方式,验证临界失效力。


本小节的第一部分,将采用《机械设计手册》中的手算公式,概略计算转子冲片在扭矩作用下所需的过盈量范围;


第二部分,与上一节中,转子冲片与转子轴,采用绑定接触方式进行连接不同,通过完美几何模型+摩擦接触+接触偏置的方法,介绍并计算过盈配合内应力的基本规律与强度优化思路,为后续章节更详细的进行强度性能优化与减重设计,提供基础参考。


二、考虑转子轴与冲片过盈配合内应力的计算方法


本节主要技能点:


1、介绍过盈配合的特征特点,以及利用《机械设计手册》的算法,对冲片圆环形模型,进行简化的过盈量及热装温度等参数的手工计算操作;


2、介绍转子冲片过盈配合仿真策略与案例操作;


首先进行手工计算。过盈配合的特征特点:


(1)、圆柱面过盈连接结合面,沿着轴向的压力分布十分不均匀。其基本规律近似下图所示。


图-01 接触压力分布


本图上半部分为《机械设计手册》的示意图,其过盈配合面两端接触压力最大,呈现一定的应力集中,向中部呈较为平缓的曲线分布;下半部分为仿真分析得到的基本规律。其两端接触压力更大,并向中间接触压力衰减曲率较高。这也在一定程度上,暗示了仿真结果与实际值略有差异。本图仅从思路上进行对比,不带表实际的分布规律差异;


(2)、当过盈引起的内应力,对转子内应力影响十分明显,以至于接近其屈服强度时,为了缓解过盈配合的应力集中效应,对于电机转子冲片与轴过盈配合而言,其受制于冲片不连续的多片薄片结构,无法通过对冲片开卸载槽等方式,释放内应力。如需改善端部应力集中的应力水平,提高疲劳强度,宜在轴的两端,适当增加应力释放槽;


(3)、过盈配合连接结构的承载力,主要取决于连接件的摩擦力和强度。其性能计算的已知条件为传递的荷载、被连接件的材料属性、摩擦系数、几何尺寸、零件表面粗糙度等;


(4)、为避免冲片压装后与转轴发生黏着和擦伤等风险,转轴与冲片的材料硬度,应有一定的差异。一般转轴表面,会进行淬火等热处理操作,以提高硬度增加耐磨性和静载疲劳寿命,从而相对较软一侧的材料,为铁芯冲片。


对于分段冲片而言,叠压时应保证冲片的毛刺方向一致,且为逆着压装方向,以方便装配;


(5)、为方便装拆,转轴的端部,应加工出15度左右的倒角,且压装时应涂抹润滑油;


(6)、压装后,应保持几分钟的压装力。组装后也应放置数小时才可承载,借以充分将内应力释放,并实现内应力的再平衡;


(7)、压装和卸载过程应缓慢,当压装困难时,可适当增加压力,但不应明显增加;


(8)、如设计过盈量较大,至使压装力过大时,可对叠片适当加热再压入;


(9)、对转轴进行深冷处理,以利用低温将其尺寸缩小的方法,其工艺性能在一定程度上,比加热转子叠片法更好,但成本较高,一般较少应用。


在进行计算前,宜列举当前算法的各种假设,以方便了解其适应范围和优缺点。过盈配合连接设计时的假设;


(1)、零件的应变,在线弹性范围内。材料均匀、连续、各向同性、无初始内应力等(实际上,均或多或少的有所不同,如没有完美的线弹性材料,以及硅钢片冷轧后的正交各向异性模量,尤其是有硅钢片冲裁及叠片间互相焊接后等引起的内应力存在等);


(2)、被连接件,为两个等长度的厚壁圆桶,其接触压力均匀分布(实际硅钢片为多组薄片贴合,轴向刚度较低,以及为两端大中间小的接触压力分布);


(3)、连接件和被连接件之间,处于平面应力状态,即轴向应力为零(实际轴向应力存在,但相对较小);


(4)、材料的弹性模量为常数(实际为受到温度、热处理、材料成分等影响,弹性模量略有变化);


(5)、适用的强度理论,为第四强度理论(实际在材料力学性能试验时,为单向拉伸过程,以拉伸应力状态为主,辅助少量剪切应力。但实际受力状态更为复杂)。


过盈配合设计流程如下(本文仅计算部分内容):


(1)、根据所需的传递荷载,确定最小结合压强Pmin以及相应的最小过盈量δmin;


(2)、根据被连接件的材料和尺寸,确定不产生屈服变形的最大结合压强Pmax以及相应的最大有效过盈量δmax;


(3)、根据最小过盈量δmin和最大有效过盈量δmax的计算结果,确定基本过盈量,并选择配合的最大过盈量和最小过盈量;


(4)、必要时,应做校核计算以及直径变化量的计算;


(5)、计算过盈配合的装拆参数;


(6)、确定被连接件的合理结构和装配方法。


假设各材料均为结构钢、不考虑温度效应、实心轴外径及冲片内径26mm、冲片外径32.5mm、传递扭矩500Nn·m、结合长度100mm、实心轴、包容件(硅钢片)屈服强度400Mpa、被包容件(转轴)屈服强度800Mpa。


由于电机转子主要受到扭矩作用,而轴向力、电磁力、外部震动及冲击力等相对可忽略,本次计算只考了扭矩作用下的过盈配合参数。

由于冲片结构复杂,且为多个单片叠装的形式,冲片外圈又开有磁钢槽,其刚度远小于实心材料。为简化计算,未代入75mm实际外径尺寸,而采用更接近磁钢槽底部尺寸的32.5mm外径。实际设计设计时,应根据实际情况与实验数据,验证等效的计算外径。


前期资料介绍完毕,下面进行公式计算。


计算项目:


(1)、传递荷载所需的最小结合压强Pmin;


传递扭矩 


式中T=传递的扭矩,本次取500000n·mm;df=结合直径=26mm;lf=结合长度=100mm(一般取0.9~1.6倍的结合长度,本次取1.0);μ=被连接件摩擦系数,见表1-1,本次取0.1及钢-结构钢无润滑条件下;


表1-1 材料间的摩擦系数


 带入以上公式,得=


(2)、直径比;包容件为26/32.5=0.8;被包容件=0


(3)、传递荷载所需的最小直径变化量;


对于包容件e min=


式中Pmin=最小结合压强=47.1Mpa;dr=轴径=26mm;C1需查阅表1-2,本次取4.255及0.75; Ei为被连接件(转轴)弹性模量=200Gpa,Ea为连接件(硅钢片)弹性模量160Gpa。


表1-2 C1值



带入以上公式,得包容件Ca=47.1x26x4.255/160000=0.0326mm=32.6μm


以及被包容件C1=47.1x26x0.75/200000=0.0046mm=4.6μm


(4)、传递荷载所需的最小有效过盈量δmin=32.6+4.6=37.2μm(双边过盈量)


(5)、不产生塑性变形所允许的最大有效过过盈量


①、不产生塑性变形所允许的最大结合压强(接触压力)包容件 


式中σa=包容件屈服强度=400Mpa、


其中qa=直径比=0.8,带入以上公式,得Pmax=0.1887x400=75.5Mpa


②、被包容件

式中σa=包容件屈服强度=800Mpa、、其中实心轴p=0.5


带入以上公式,得Pmax=0.375x800=300Mpa


取75.5Mpa与300Mpa的较小值,得不产生塑性变形所允许的最大结合压强为75.5Mpa。


(6)、不产生塑性变形所允许的最大直径变化量


①、包容件


式中,Pmax=75.5Mpa、Ca=查阅下表=4.855、Ci查阅下表=4.255、Ea=160Gpa


表1-3 Ca与Ci值



带入以上公式,得emaxa=75.5x4.855/160000=0.00229mm


②、被包容件


式中Ci=4.255带入以上公式,得emaxi=75.5x26x4.255/200000=0.0418mm


 (7)、被连接件不产生塑性变形所允许的最大有效过盈量


δmax=emaxa+emaxi=0.00229+0.0418=0.00647mm=64.7μm。


显然相对于500N·M的扭矩而言,这是一个极小的数值。


 (8)、配合选择

初选基本过盈量


式中,δmin=37.2μm,δmax=64.7μm


带入以上公式,得50.95μm


(9)、确定基本偏差代号根据δ及dr查阅下图计算



图-02 基本偏差代号


查图得,偏差代号为u


(10)、选定配合。根据偏差代号u、δmin=37.2μm,δmax=64.7μm,并查阅G/T1801规范选用配合。见图-03。



图-03 常用配合


查图得配合为U7/h6。再据此查阅下表选择过盈量。


图-04 选用过盈量


查图表得,过盈量优选范围是35μm~76μm。


(11)、装拆参数。


需要的压入力


带入已有参数得F=75.5x3.1415x26x100x0.1/1000=61.7Kn≈6吨力


经计算,在等效转子外径32.5mm,内径26mm,在承担500N·M扭矩时,过盈量范围是35μm~76μm(双边)。


由于本电机尺寸较小,不可能出现500N`M的扭矩工况,而此工况下对应的过盈量范围,仅数十个微米量级,说明当前情况下,保证扭矩不松脱的过盈量,不需要太大。


在常见的新能源乘用汽车电驱动系统中,由于主流的电机转速度,在一万转左右甚至更高。等效数百倍重力加速度的强大离心力,会明显的降低过盈后形成的接触压力,从而有丧失承载扭矩动力的风险。这就需要采用相对较大的最小过盈量进行抵抗;


相反的,为降低加工精度、成本、进度等方面的要求,最大过盈量(加工公差)应越大越好。但过大的最大过盈量,将显著增加转子冲片的内应力,以至于最大应力,可能很容易接近或超过材料屈服强度,甚至远远超过。这就需要尽量降低最大过盈量。


另外,如果最大过盈量与最小过盈量的范围太过接近,将对机械加工精度及成本等,提出了更高的要求,又宜尽量将两者远离。


这是一个反复调整权衡利弊过程,一般通过仿真分析方法进行初步验证,而后进行样机高速强度实验,以考察设计合理性。


以上仅从机械强度角度进行考虑。深入设计时,还应考虑电磁性能及温度应力的影响等,以综合选取最佳的强度设计方案。


至此,手工计算部分完成,下面进行仿真分析案例部分。


对仿真而言,理论知识是真正的核心竞争力。其包含了告诉用户诸如,可以采用什么方案、什么是对的、一般是什么规律、应该是什么趋势、什么是错的、如何做是对的、出错后,原因在哪、如何排查修正等问题的各种知识,如材料力学、有限元方法、计算方法、计算机原理、材料的力学性能等。


一般而言,一个合格的仿真分析岗,或者说性能开发人员的知识架构中,宜50%左右的比例,用于积累各种仿真软件背后的理论知识、40%为了解自己及友商产品的结构与性能,现有及通行的设计加工制造方法与能力及知识、各种设计实验检测规范和技术规格书、实验及检测方式方法知识、仿真与实验对照方法等的工程经验方面的知识、而最后的约10%比例,为仿真软件的操作和使用。


即以理论知识为指路明灯,以工程经验为落地选择,通过软件操作验证性能,并使用经过试验验证及对标校准后的仿真结果,指导产品改进优化的,所谓5-4-1定律。


在进行过盈配合的仿真分析时,需提前了解两个关键的理论知识:迭代计算方法及接触算法。本节的前面部分,主要介绍其原理和基本规律,后续进行软件案例演示。


在有限元分析计算中,应力等计算过程,一般需构建总体的刚度矩阵,并求解它。这个矩阵的结果,在考虑非线性计算时,如材料、几何、接触等引起的各种非线性行为。一般是无法预知最终受力平衡时,外载与支撑处反作用力关系的。一般借助迭代计算的方法,一点点的尝试,并试图逼近一个合理精度的结果。这需要依靠让无数人疯狂,也让无数人痛苦的牛顿先生,发明的微积分计算方法——牛顿迭代法。


没错,就是中学物理课本上,那个发现万有引力定律,总结出三大牛顿定律等的旷世奇才艾萨克·牛顿。


某度百科有云:“牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphsonmethod),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。”;


“牛顿迭代法解非线性方程,是把非线性方程线性化的一种近似方法(冯康院士总结的有限元核心思想之一,化繁为简、以简驭繁)。”;


以及“多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数的泰勒级数的前面几项来寻找方程的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。”


在完全的牛顿迭代法中,一般假设一个初始值,其在有限元中,对应了结构初始的刚度,并进行更新。类似的在瞬态CFD计算中,也需要合理设置一个这种初始值。而后让外力逐渐加载,从0%比例的外载,逐步增加到100%,并计算在各切线刚度及外载下,对应的结构受力等,并将其与支座处的反作用力进行比较(至少需要一个固定约束,或者合理的与大地的约束条件,即引入边界条件,以消除矩阵奇异)。


在静力学分析中,应随时维持作用力与反作用力,大小相等方向相反的基本规律。这会使物体处于平衡状态(还是初中物理课的二力平衡后,保持静止或匀速运动。对于静力学分析,就是保持静止或等效为静止)。从而可以基于此状态,在逐渐的加载后,一点点的计算出,外载作用下,对应的应力等结果。否则不平衡状态,将使模型发生刚**移(初中物理课的匀加速直线运动),从而像在宇航员在太空漫步一样,无限飞行下去,以至于无法得到一个确定的位置解答一样,计算将失败。结果为零,计算进度为零。


在仿真软件中,一般可提前在分析设置中,开启弱弹簧功能(在Solid works软件中,被翻译成软弹簧),以辅助控制刚**移的发生。并应逐步排查,引起刚**移的各种原因。但这个操作,会稍微增加计算量及降低计算精度。


如果两次迭代计算的作用力与反作用力差异较大,软件将在下一次试算中,适当调整切线刚度矩阵,并继续计算。如差异较小,则在这个基础上,微调切线刚度矩阵继续计算。如果随着计算的进行,多次尝试刚度后的结果,越来越接近理论上,作用力与反作用力相同的趋势,则意味着计算进程有效,为逐渐收敛的解,否则将是发散解。


计算时,需一点点的加载,并且每次加载后,反复比较与反力的偏差,其在仿真软件中,一般对应了力的收敛值。但世界上没有完美的事情,任何一个计算不会是精确的无误差。其实,只要反力的误差在合理范围内,如差异小于1%,即可得到足够收敛的结果。在仿真软件的求解设置中,可以自动或手动设置,该误差的比例或限制值。


这种逐渐加载的过程,也从原理层面引发了一个问题,就是合理选择加载比例的问题。假设最终需要计算100N的外力对应的结果。最开始分为20次逐渐加载,分别计算每一个过程(20个荷载步),则每次加载为5%比例,即5N。这个比例,一般而言可以认为是较大的。这需要20次小的计算才可以完成,总体计算量为一次时的20倍。


每次加载比例较大的优点,是宏观计算量较小。缺点是,容易引发作用力与反作用力不平衡,不利于实现收敛(步子大了容易扯到蛋定律)。那就要多次试算,从而变相的增加了计算量。


如果试算不成功,软件一般会自动的将加载比例减半(即自动二分过程)。如从每次增量5%,变成2.5%一次,继续计算。如果几次试探后,成功收敛,则后续将恢复5%;如果不成功,会以2.5%增量继续计算直到收敛。如依旧不成功,会再次二分为1.25%。如果依然不收敛,软件一般会停止挣扎,终止计算。


这时应仔细检查出现不收敛的原因。如果找到,可以继续计算;如果没找到,计算停止。则总的计算进度,停留在最近一次收敛点处。如果一切成功,则又恢复5%加载比例继续计算。这种反复调整过程,也将时刻牵动着用户幼小的心灵。好消息是,该过程可以随时暂停,随时查看中间结果以及判断计算中,可能出现的问题,并可继续进行计算。


在仿真软件中出现二分,一般也意味着当前加载比例过快,在收敛图中以红色表示。依然是世界上没有完美的事情定律,适当的二分,不会明显影响结果和计算量,可以容忍。以上规律也显示了,大量的二分,说明初始的加载比例过大,以至于很难收敛(单纯从加载增量的比例角度考虑)。


而如果增加加载的步数(在仿真软件中,一般称为子步数),如从20变成100。则每次加载的增量减少为1%,其将以更平缓顺滑的方式加载(如某些巧克力或洗发水广告词中的纵享丝滑),那么每次加载后的力变化,就比较小,相对更容易形成二力平衡,从而有利于收敛。不至于出现,因为干干巴巴的,麻麻咧咧的,一点也不圆润,需要盘它的情况。但因为总体上,变成了100次的逐渐加载,总的计算量,在加载子步数量的层面,相对之前的20次,增加了5倍,也会增加计算量,从而大大增加计算时间。其对电脑CPU的浮点性能和整机稳定性的考验极高。这需要权衡利弊。


加载比例的调节,在仿真软件中,一般在求解设置的子步菜单,进行调整。一般需要设置初始子步、最大子步数、最小等。应从较少的子步数(每次加载比例较大)开始试探,如二分过多,可适当增加。也可也软件自动(默认)。


如此繁琐的过程和各种不完美的情况,也许也是为什么,强迫症患者或者完美主义者,不适合做仿真岗位的原因之一。另外有一些特质的人,也明显不适合做此类岗位,如密集恐惧症。其看到满屏幕细小密集的网格,会很崩溃;以及色盲或色弱人群,其将无法清晰的通过结果云图的颜色,定位和判断数据的量级与具体数值。还有,缺乏耐心及脾气暴躁者,也明显不适合,比如在多次计算不收敛,或者需要沉下心学习软件背后的理论知识的时候,容易人神共奋。


在基于仿真技术的性能开发中,真正的难度,在需于对理论知识充分的理解和应用,以及对产品的充分熟悉。这需要大量的积累,门槛极高。否则,什么精度、效率、指导设计、优化提升等就无从谈起。并且仿真计算的策略、方法、路线、解决方案等,没有标准答案,也几乎没有所谓的正确答案,标准模板等。那么不确定因素很多,可以使用的方法,也就有很多。这需要用户了解各种可能性,各种解决方案的优缺点、使用范围、效果趋势与结果规律、各种改进方案性能规律等,有一个充分的了解与认识,从而在多方案多条件限制下,综合利弊权衡优劣,并在合理的精度、难度、进度、计算量等条件下,从而选取最简单、方便、快速、低成本、适合自己当前状态的解决方案。


为了保证总体进度,建议先从最简化最基本的方案,开始尝试用最低的成本,满足一个基本堪用的计算。如果成功并且还有足够的时间,再逐步尝试更加完善和高精度的一些方案。而没有标准答案,只有最适合的,也许是对大部分,经历过应试教育后的用户,提出的一个巨大转变与挑战。


在完全的牛顿迭代法过程中,结构的切线刚度矩阵,将随时更新,这个过程的计算量一般较大。好处是,一旦计算过程出现了收敛趋势,其收敛速度将呈平方关系加快,有利于更快速找到合理结果,且适合计算刚度变化较大的情况。同时,进行非线性迭代计算过程的计算量,将明显的大于普通的线性计算,因为后者中,只需要计算一次刚度矩阵即可。由于每次需要更新切线刚度矩阵,计算量将大大增加。


有一种相对简单的方法,可在合理精度下适当加快计算,那就是改进的牛顿迭代法。其只在第一次计算中,生成初始的切线刚度矩阵,但在后续试算中,均基于这一个刚度矩阵,就大大节省了计算量。只不过需要用户自行判断,结构受力前后的刚度,是否明显变化。如变化较小,以至于前后可以用一个看似不变的刚度矩阵进行等效,那么采用改进的牛顿拉普森方法,将在一定程度上节约计算时间。这个算法,也是在软件的求解设置中,可以手动调整的,默认一般为完全法。


同时,由于非线性计算,会有较大的概率出现不收敛,将明显的增加计算调试过程的次数,甚至在不合理的模型、材料、接触等情况下,不会得到收敛结果的情况,从而使得总体的计算量大大增加。一般会增加十倍甚至百倍。


在极端情况下,无法收敛的结果,将不能用于后续计算。意味着总体计算进度,为前面的局部;类似的,对于CFD计算,由于也是迭代过程,并且无论是否收敛,都可以随时暂停,随时查看中间过程,以至于如果进度不允许的话,完全可以用一个计算一半的结果拿去使用。这与线性计算相反。


在线性计算中,由于不会遇到不收敛无法得到结果的问题。那么无论如何,都会有一个结果,无论好坏对错。但在非线性迭代的计算中,不收敛的结果一定是错的;而收敛的结果,却是正确的必要不充分条件。并且带来了调试次数的不确定性,完成收敛时间的不确定性等。那么意味着,总的计算进度无法保证,结果的质量也无法保证,这种或生或死的薛定谔的仿真结果,将十分挑战使用者的理论知识和抗压能力。


很明显,牛顿迭代法是一个“瞎蒙”的算法。在不能预先知道结果在那里的时候,通过合理的“蒙”,确实也可以帮助找到一个相对适合的结果。仿真计算过程中,用户会遇到各种各样的问题,而漫无边界的瞎蒙,却不是一个好的解决方案。蒙对的概率如此之低,以至于绝大多数时候,没有理论依据和没有事实参考的瞎蒙,基本意味着白费努力,浪费时间。


所以推荐的解决方案是,用知识去武装自己,拒绝瞎蒙,用知识中的基本规律和基本方法告诉自己,如何做,怎么做是对的,什么才是合理的。


以上为对迭代法的一般认识,下面介绍接触计算。


接触算法,一般而言是典型的非线性计算,其属于多零件模型中,考虑状态非线性的一种计算技术。其可用于考虑各种带有变化过程的计算,比如零件互相的碰撞触碰、分离与张开、胶水的撕裂、各种带有摩擦力的场合、摩擦生热、各种连接或联动的运动过程、磨损、螺纹连接的螺纹牙受力(简化算法)、过盈配合(在Solid works软件的有限元模块中,其被翻译成冷缩配合)等各种各样的情况。由于可以考虑的情况有很多,各种困难也较多,这也是为什么属于结构仿真中,难度相对较高的一种技术的原因。


另外两个典型的非线性问题,为材料非线性(如塑形变形等)和几何非线性(如屈曲等)。


除了ANSYS中的绑定接触(在Solid Works软件的仿真模块中,被翻译为结合;在ABAQUS软件中,类似的功能为tie)或不分离接触,为简化的线性计算。其他的如摩擦、无摩擦、粗糙等,均为典型的非线性接触。需要依赖上文介绍的迭代计算方法,以及各种接触算法进行计算。(正如初中生物课的马卡洛夫条件反射实验告诉我们,学习的本质,是将原本看似毫无关联的知识与信息,连接起来。)这将进一步带来理论知识的复杂度、调试难度、计算量、计算成功率的各种各样的,或收敛或不收敛的薛定谔的接触等问题。进一步考验了使用者的理论知识和抗压能力。


在电机转子总成过盈配合计算中,由于过盈量相对总体尺寸较小,且一般需要反复调整过盈量级,可使用摩擦接触的接触调整算法,进行表达。


流程是:首先建立完美尺寸的模型,并适当划分网格,而后在摩擦接触中,开启接触调整功能,并输入过盈值。软件将首先计算两个零件接触面(一般为转子一侧)和目标面(一般为硅钢片一侧)节点的位置。然后根据输入的过盈值,在有限元模型层面,硬生生的把目标面一侧的节点,等间距的向外推出,过盈值对应的距离。从而产生了,因为尺寸过盈而形成的膨胀效果。


这个膨胀效果,将在目标面对应的硅钢片零件内部,产生以环向拉伸膨胀为主的内应力。由于材料的弹性,也会对目标面,形成一个反作用力,其表现为接触压力。对于过盈配合而言,实现零件间可靠抱紧,而用于抵抗电磁力扭矩、温度、离心力等外载的能力,主要依靠的,就是这个接触压力。如果追求极限减重,有各种减重孔的存在,也会在一定程度上,降低接触压力。


一般而言,需要考虑最小过盈下的接触压力,加大到一定程度,以防止滑动。由于转子总成的机械加工和装配等而言,都需要有一个合理的公差范围。在合理的制造效率和成本等限制下,这个公差范围宜越大越好。


在最小过盈保持不变的基础上,过大的公差范围,将带来过大的最大过盈量,以至于最大过盈引起的内应力,将达到甚至超过硅钢片可以承受的应力。那么就需要性能开发人员,通过合理的设计冲片的细节结构形式,在极限减重的情况下,尽量减少最大内应力,并且开孔和开槽形状方便冲压。


并且各种开孔和开槽等,均会对电磁性能,产生各种以有害为主,有时有利的影响。在冲片强度设计中,还应与电磁性能开发设计人员,充分进行沟通交流,权衡利弊。


总结一下就是,保证可靠贴合的接触压力和加工限制,决定了最小过盈量;而冲片最大允许内应力,决定了最大过盈量。这是一个在设计、仿真、制造、成本间,互相协调权衡利弊的过程。


对于仿真软件而言,通过提取接触面的接触压力,可用于精确判断,实际接触压力的量级和范围;通过提取应力结果,可判断硅钢片的受力分布与安全系数。


冲片中的应力分布规律,与上文离心力计算后得出的,离心力主要在径向隔磁桥,出现拉伸为主,外圈隔磁桥,出现弯曲为主的局部内应力规律不同。过盈配合,将对硅钢片总体内部,形成大范围的环形方向为主的拉伸内应力。其受力范围和应力传播方向与离心力,不可同日而语。在二者组合下,对转子冲片应力设计及优化的难度,将大大增加。这也对强度性能开发人员,提出了严峻的挑战。


至此,迭代算法与接触算法的基本知识介绍完毕。


作者:刘笑天,仿真秀科普作者。


声明:原创文章,首发西莫电机论坛公 众号,本文已授权,部分图片源自网络,如有不当请联系我们,欢迎分享,禁止私自转载,转载请联系我们。


通用其他软件
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2019-03-25
最近编辑:9月前
刘笑天
本科 | 电驱动系统强... 笑看天云谈,选择比努力更重要
获赞 151粉丝 2031文章 33课程 12
点赞
收藏
未登录
2条评论
何贻海
有志者,事竟成!
4年前
感谢老师分享
回复
何贻海
有志者,事竟成!
4年前
感谢老师分享
回复
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈