首页/文章/ 详情

三维温度场视角比较热测试动态法和静态法

3年前浏览2667

  最近一连串碰到关于热测试方法的比较问题,一时找不到答案。我们是用类似于测电阻的方法去测热阻,想找到根本原因,习惯上思考还是要回到问题的本源。


首先我们看电阻和电导率的关系:

 

R=L/σA

 

R  电阻

L  导体长度

σ  电导率

A  导体的横截面积

 

而热阻和热导率的关系:

 

R=L/λA

R  热阻

L  导体长度

λ  热导率

A  导体的横截面积

 

以上两个公式非常的相似。实际上,从微观上说,电导率和热导率都和材料的自由电子有着一定的相关性。

电导率主要决定于材料自由电子的数量,而热导率一般包含两个部分。

 

λe λp

 

电子热导表示为λe  声子热导表示为 λp

 

电子热导和材料的电导联系紧密,其关系满足Wiedemann-Franz定律:

 

λe=LσT

 

λe  电子热导=LσT

L   Loranz常数:L=2.45×10-8WΩK-2(温度较高时,L是常数)


σ   电导率

T   热力学温度

 

声子热导和材料的声子相关。所谓声子,并不是真实的微观粒子,而是固体材料中的晶格点阵的集体运动模式,这种运动模式和粒子很像,也有把这种运动模式称为准粒子。而由晶格振动产生的热传导就是声子热导。

声子热导满足:

 

λp=CvLv/3

 

Cv  比热

L   声子平均自由程,

v   声子传播速度。

 

对于金属材料,声子热导相对较小,电导率和热导率几乎成正比关系。

 

而对于非金属绝缘体,自由电子数量很少,没有电子热导,主要靠声子热导导热。所以非金属材料的热导率和电导率没有线性关系。

宏观上,绝缘体对比导体的电导率大概是20个数量级,而绝缘体对比导体的热导率相差大概只有3-4个数量级。

工程应用中,如果我们要研究系统的传热路径上的热学参数(热容,热阻),就必须要注意到这个物理事实。

                           

图片


图一


电路中,电阻无论并联或者串联,电阻元件自身的电阻值基本是稳定的,如上图所示,不会因为改变R2而导致R1的电阻值改变。在整个电路中,电场在导体中均匀分布,不会出现某地方电场强度比其他的地方大的情况。

但是温度场却不一样。

除了电导率和热导率的差异以外,温度场和电场的扩散速度也有本质的区别,电场的速度是光速,远远大于自然界中温度场的速度。

 

图片


图二 三维温度场


从上图可以看出,温度场并不是均匀分布的,而是高低不一,在功率一定的情况下,如果传热路径中某个材料发生变化,会导致温度场重新分布。

我们还是举一个例子吧,下图是一个散热路径的示意图,为了能够说明问题,我们用形状比较规则的材料。

最上面一层材料的核心部分是热源,散热路径是从热源材料通过黄色材料传导到蓝色材料,最终散到环境中去,我们在黄色材料取一个温度采样点A

当蓝色材料的热导率很高的时候,温度场分布如左边的图,黄色材料参与散热的面积大概是中间一部分,根据热阻公式可以算出一个热阻值Rth1,而蓝色材料的热导率降低后,根据热力学第二定律,热会在黄色材料内部发生扩散,导致黄色材料的下表面散热面积增大很多(如右图),也可以根据热阻公式算出一个热阻值是Rth2,可以看出蓝色材料的热导率变化会导致黄色材料的热阻发生变化。

而实际工程应用中,大部分的材料形状是不规则的,温度场的形状千变万化,难以捉摸,给我们的研究工作增加了很大的难度。


图片



图三 热阻是会变化的


现实工程应用中,我们通常通过某一些点温度的采集,希望能捕捉到温度场的变化,比如我们常用的RthjcRthjtRthjb等等,都是用一个某一个点温度和结温之间的温度梯度来定义的,这个温度采样点就很讲究了,比如上图的温度采样点A,左图中,A点就不在散热路径上,A点的温度和温度场几乎没有关系,而右图中A的温度变化可以一定程度上体现热源的功率变化。

常用的结壳热阻等数值,是一个标量,我们通过测量这些标量的变化来表征整个温度场的变化,就必须制定测量标准来保证测量结果的可比性和重复性。

1995JEDEC 51系列的JESD 51-1标准,规定测量结壳热阻的两种方法,动态法和静态法,目前这两种方法在电子器件行业依然还有广泛的应用。

图片


图四 JESD 51-1


动态法是通过点亮后关断,再点亮,再关断,多次测量,温度不断上升,记录温度上升的过程以及上升过程中的温度梯度。

在实际测量执行中,如何选择测量电流和加热电流对工程师的经验有很大的依赖度。温度上升过程中,加热功率和散热功率同时起作用,从三维温度场的视角去看,参与散热的材料总和是不断变化的,也就是散热路径上的热容和热阻是不断变化的,加热电流的不同,会导致这种变化不稳定,并且难以评价,所有动态法的结构函数重复性不好,也没有实际的物理意义。如果我们固定测量方法和参数,做横向比较,还可以具备一定的参考性;而如果是希望用测试值去表征变化的温度场,就必须用严格的标准和操作规范,并多次尝试,才能保证测试结果的重复性。

静态法是加热至饱和以后关断,用高采样频率对降温曲线进行一次测量,记录温度变化的瞬态曲线。

温度饱和后,其散热的材料总和也是确定的,所以热容和热阻也是确定的。在整个温度下降的过程中,只有散热功率在起作用,可以保证散热的材料总和具有一定的重复性,得到的结构函数,也是有特定的物理意义的。而实际工程应用中,静态法得到的结构函数重复性比较好。

为了工程应用方便,我们希望可以用标量去表征温度场的变化,所以即使用静态法,我们一样的要做实验设计,确定合适的加热电流和测试电流,确定合适的测试环境,并对测试结果做合理解读。只有这样,我们才能得到可靠的,重复性高的数据,我们在实际工程应用中,才能依赖这些测试数据,得到精确的,稳定性高的研究成果。

动态法和静态法在电气性能上也存在一些差异,静态法也存在优势,趋势上,静态法逐步成为行业上普遍应用的测试方法,在2010JESD 51-14的标准也只有静态法。

目前的器件复杂度提高,散热路径也越来越复杂,用标量来表征温度场,其局限性越来越明显。而封装技术和应用技术在不断进步,行业呼唤新的可执行的标准。无论如何,只有基于三维温度场视角的标准,才会更有生命力。





理论科普仿真体系热设计其他软件
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2021-10-08
最近编辑:3年前
今昔CAE随笔
本科 | 销售总监 allenchousf
获赞 93粉丝 157文章 61课程 1
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈