来源:能源情报
作者:唐文虎、陈星宇等
全球能源行业顺应数字化时代不断发展,我国电力体制改革深入推进,在这一背景下加快能源转型已成为行业共识。但能源行业存在着体制、技术与市场壁垒,使得能源转型面临挑战。国家能源局提出智慧能源战略,建设互联互通、透明开放、互惠共享的能源共享平台,以期解决能源行业普遍存在的壁垒问题。数字孪生技术可在物理世界和数字世界之间建立精准的联系,有助于解决智慧能源发展所面临的技术难题,支持从多角度对能源互连网络进行精确仿真和控制。然而,数字孪生技术在智慧能源行业的定义和应用架构仍有待深入研究,对于能源系统的数字孪生技术应用试验也仅处于初步的验证探索阶段,涉及能源系统变电设备、电力传输网和热电厂的数字孪生模型研究。
本文以面向智慧能源系统的数字孪生技术为研究对象,重点梳理智慧能源领域对数字孪生技术的需求和国内外研究现状及趋势,探究数字孪生技术在智慧能源系统中的定义和通用架构,据此分析面向智慧能源系统的数字孪生关键技术和生态构建。
在此基础上开展数字孪生技术在智慧能源行业的部署和应用案例研究,进而展望数字孪生技术在智慧能源行业的发展方向和应用趋势。
二、面向智慧能源系统
的数字孪生技术需求分析
2019年11月,《中共中央关于坚持和完善中国特色社会主义制度推进国家治理体系和治理能力现代化若干重大问题的决定》要求,推进能源革命,构建清洁低碳、安全高效的能源体系。《“十三五”国家战略性新兴产业发展规划》提出,培育基于智慧能源的新业务、新业态,建设新型能源消费生态与产业体系。我国能源产业生态正在发生深刻变革。
目前新型冠状病毒肺炎疫情给我国经济发展和能源行业带来了冲击,煤炭、天然气、电力、新能源等行业均遭受到一定程度的影响。这并不能改变我国能源体系实现能源转型的目标,能源生产和利用方式的根本性改变亟需以新一代数字化技术为关键支撑。
我国能源供应朝着分散生产和网络共享的方向转变,但能源行业仍普遍存在体制、技术和市场壁垒,能源供应侧、传输侧和消费侧都存在大量信息不透明、不共享的问题。国家能源局提出的“互联网 ”智慧能源战略,将借助现代信息技术提供互联互通、透明开放、互惠共享的信息网络平台,打破现有能源“产、输、配、用”之间的不对称信息格局,推进能源生产与消费模式革命,重构能源行业生态。该战略的落地实施要求能源系统实施数字化深度转型,运用新的技术手段助力数字化转型成为亟需。
云计算、人工智能(AI)、大数据、数字孪生等新兴热点技术,为能源行业的创新与变革带来了新发展动力,为加速能源系统的数字化转型提供了技术支撑。
构建智慧能源生态系统是我国能源行业的发展趋势,而融合物联网技术、通信技术、大数据分析技术、高性能计算技术和先进仿真分析技术的数字孪生技术体系,成为解决当前智慧能源发展面临问题的关键抓手。在现有能源系统的建模仿真和在线监测技术的基础上,数字孪生技术体系进一步涵盖状态感知、边缘计算、智能互联、协议适配、智能分析等技术,为智慧能源系统提供更加丰富和真实的模型,从而全面服务于系统的运行和控制。
三、面向智慧能源系统的数
字孪生技术研究现状与趋势
近年来,国外对数字孪生技术的理论层面和应用层面研究均取得了快速发展。美国通用电气公司(GE)和辛辛那提大学应用涵盖从设计到维护全过程的数字化来优化产品生产,但尚未实现数字孪生的统一建模技术。美国ANSYS公司提出ANSYSTwinBuilder技术方案,创建数字孪生并可快速连接至工业物联网,用于改善产品性能、降低意外停机风险、优化下一代产品。文献提出了数字孪生参考模型,在概念层面实现了对产品生命周期的全面描述。文献提出了一种多模式数据采集方法,将生产系统与数据库耦合,为数字孪生提供了状态感知与分析的基础能力。
与国外的快速发展势头相比,国内在数字孪生技术方面的研究仍处于萌芽阶段。文献提出了一种描述复杂产品的数字孪生设计框架,探索了开发过程中的关键技术。文献提出了数字孪生五维模型概念,展望了该模型在10个不同领域中的应用前景。文献多角度分析了大数据和数字孪生技术之间的异同以及如何促进实现智能制造。文献总结了信息物理系统中数字孪生的关键技术,描绘了数字孪生技术在产品全生命周期的实现途径。
数字孪生技术在各领域的应用迅速发展,而无论国内还是国外,有关数字孪生技术在能源行业的应用大都处于探索验证阶段。法国达索公司致力于电气设备的数字孪生仿真建模研究,搭建了用户和设计师之间的交互平台。上海交通大学研究团队建立了数字孪生电网的潮流模型,验证了数字孪生电网的技术可行性。安世亚太数字孪生体实验室基于Flownex设计软件建立了数字孪生热电厂模型,为热电厂的工程设计和维护提供了技术参考。清华大学研究团队利用数字孪生CloudIEPS平台,建立了数字孪生综合能源系统模型,达到降低了能源系统运行成本的目标。
一般认为,数字孪生技术特别适用于资产密集型且可靠性需求高的复杂系统。该技术已逐渐应用到诸多工业领域,又以制造业领域为典型。智慧能源系统是融合多能源的综合复杂系统,与数字孪生技术的应用方向高度契合。然而,当前数字孪生技术在智慧能源领域应用发展比较零散,没有建立数字孪生技术在智慧能源领域的应用实施框架。
四、面向智慧能源系统
的数字孪生定义和框架
1.面向智慧能源系统
的数字孪生技术定义
数字孪生技术早期被运用在国防军工及航空航天领域,其基本理念是由Grieves教授2003年在产品生命周期管理课程上提出。对数字孪生技术概念给出定义,则要追溯到2009年美国空军研究实验室(AFRL)提出的飞机机身数字孪生定义。2009—2019年科研机构对数字孪生技术所给出的定义见表1。
综合各类定义描述,本文面向智慧能源工程应用,概括数字孪生的定义如下:数字孪生技术充分利用精细化物理模型、智能传感器数据、运维历史等数据,集成电、磁、热、流体等多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成对智慧能源系统的映射;数字孪生实例反映对应智能设备的全生命周期过程,能够实时更新与动态演化,进而实现对智慧能源系统的真实映射。
2.面向智慧能源系统
的数字孪生架构及特点
结合数字孪生的通用架构,本文给出了数字孪生在智慧能源系统中的架构,针对智慧能源系统的特点该架构分为五部分(见图1):物理层、数据层、机理层、表现层和交互层。数据层首先从物理层中收集大量数据,然后进行预处理并传输;机理层从数据层接收多尺度数据(包括历史数据和实时数据),通过“数据链”输入仿真模型后进行数据整合和模拟运算;表现层获得机理层仿真的结果,以“沉浸式”方式展现给用户;交互层可以实现精准的人机交互,交互指令可以反馈至物理层对物理设备进行控制,也可以作用于机理层实现仿真模型的更新和迭代生长。相应层次的特点具体阐述如下。
整体来看,数字孪生既不是对物理系统进行单纯的数值模拟仿真,也不是进行常规的状态感知,更不是仅仅进行简单的AI、机器学习等数据分析,而是将这三方面的技术都有机整合于其中。数字孪生对能源系统进行数字化建模,并在数字空间与物理空间实现信息交互;首先应用完整信息和明确机理预测未来,再发展到基于不完全信息和不确定性机理推测未来,最终实现能源系统的数字孪生体之间共享智慧、共同进化的孪生共智状态。
五、面向智慧能源系
统的数字孪生关键技术
1.云端–边缘端协同
的数字孪生服务平台
智慧能源系统包含了众多领域的物理设备,数据采集向多样化发展,且数据量呈指数级增长。常规的数据服务平台已无法满足对数据进行快速准确处理的要求,亟需构建云端–边缘端协同的数字孪生服务平台。边缘端需要利用智能设备进行一部分本地计算,云端则要求将各设备的数据整合后进行运算。通过建立“数据链”、通用算法库和模型库,实现多源异构数据分析任务的高效协同分工,从而为数字孪生的应用奠定基础。
2.智慧能源系统的高
效仿真与混合建模技术
智慧能源系统由机械、电气和信息等多系统组成,需要从多物理场和多尺度的角度进行全面、综合、真实地建模和仿真。通过虚实信息的传递并加载到数字孪生模型上,构建“模型驱动 数据驱动”的混合驱动方式进行高逼近仿真,在虚拟环境中实现能源系统复杂工况下部件级及系统级性能的预测与分析。
3.数字孪生技术的
信息安全防御机制
智慧能源系统是一个由信息网络连接各子系统的复杂系统,具有高度网络依赖性。信息交流的可靠与否决定了系统能否正常运行,任何设备的安全问题都可能引发系统数据泄露。针对智慧能源系统面临的恶意解析和篡改风险,需要研究网络攻击检测与防御技术,增强智慧能源系统运行的安全性。
4.“沉浸式”智慧能源
系统可视化和交互技术
有别于常规数学仿真模型,数字孪生模型强调虚实之间的交互,能实时更新与动态演化,从而实现对物理世界的动态真实映射。“沉浸式”可视化技术,可以帮助用户更清晰、更透彻、更丰富地认识世界,分为算法可视化和模型可视化。
5.可扩展数字孪生
技术的应用新模式
数字孪生交互技术的实现,提升了人机之间的交互能力。该技术可以结合虚拟体的仿真结果,为物理实体增加或扩展新的能力,实现对设计端和运维端的反馈与控制,最终完成对设备物理实体和虚拟仿真体的精确描述与行为预测;在此基础上可以提供一系列数字孪生技术的应用新模式。
六、智慧能源系统
的数字孪生生态构建
智慧能源系统的数字孪生生态构建 面向智慧能源系统的数字孪生技术贯穿于能源生产、传输、存储、消费、交易等环节,有助于打破能源行业的时间和空间限制,促进各种业务的全方位整合与统一调度管理;横向联合能源行业参与主体之间的业务,提高能源利用效率。梳理形成智慧能源行业的数字孪生技术生态圈(见图3),按照能源系统的全生命周期过程将之划分为六部分:能源生产、能源传输、能源分配、能源消费、能源存储和能源市场。随着各部分之间交互的不断加深,逐步实现基于数字孪生技术的智慧能源行业可持续发展。针对数字孪生技术应用,对智慧能源行业的6个参与主体概括阐述如下。
1.能源生产
借助云端–边缘端协同的数字孪生服务平台,能实现能源生产高效转换。通过建立虚实映射的仿真模型,实时对能源生产机组的运行状态和运行环境等进行监控和模拟仿真运行,及时制定各能源生产机组的最优运行策略;同时应用运行数据中提取的特征来优化设备生产设计方案,包括数字孪生风机、多物理场光伏模型和数字化电厂等。
2.能源传输
由于能源空间分布失衡,我国部分区域能源资源匮乏,需要依赖能源传输以保障能源安全。数字孪生技术可以提升能源传输过程中的控制和优化能力。应用数字孪生技术,对直流输电网中的柔直模块化多电平换流器进行数字孪生建模,以实现对能源传输的优化和升级。针对用于电能传输的电缆等设备,应用数字孪生技术进行虚实映射的数字化建模,指导电缆设备的全生命周期设计,以提高设备的运行性能和增长设备的使用寿命。数字孪生电网在虚拟实体中可以实现多物理场和多尺度的仿真,使管理人员更真实地了解输电设备的运行状况和各节点的负荷状况,通过大数据和智能算法实时监控电网并及时对电网可能出现的问题进行预警。
3.能源分配
能源分配 能源路由器的研发尚处于起步阶段,运用数字孪生技术对能源路由器建立虚拟模型并进行大数据模拟分析,进而指导设备的生产设计,大大缩短设备的研发周期。针对能源分配环节存在的大量变电设备,采用数字孪生技术将变电站设备实例化,在智能机器人与智能安全监测设备的辅助下,实现海量数据与物理设备的关联映射,在可视化平台进行实时展现,形成数字孪生变电站,提升能源分配的经济性和安全性。
4.能源消费
能源消费 数字孪生由虚到实的理念,将助力设计师突破传统的制造工艺限制来实现全新设计,如建立新能源汽车的数字孪生模型,形成数字孪生映射,对新能源汽车的设计模型进行更新以完善其性能。智能楼宇作为智慧能源系统中的重要部分之一,是典型的产销者。数字孪生技术对智能楼宇中的智慧家具、供冷供热系统等建立多物理场和多尺度的仿真模型,对楼宇的温度、湿度、人员数量和位置等信息进行采集;在可视化平台中,管理人员基于物联网技术可以轻松实现对智能楼宇各子系统的智能化控制,运用AI算法实现智能楼宇的运行趋势预测和最优运行策略制定。
5.能源存储
能源存储 在电动汽车充电桩的规划阶段,基于数字城市模型对充电桩的布局进行模拟规划,在满足用户充电需求和市政规划要求的条件下,实现充电桩的最优分布。在充电桩建成后,对每个充电桩进行仿真建模,在虚拟场景中呈现其状态信息,及时监测并反馈到实际运维管理中指导故障的及时处理。对储能设备(如电池、超级电容等)进行多物理场、多尺度数字孪生建模,将这些模型应用于监控和预测储能设备的运行情况,从而实现优化配置。
6.能源市场
能源市场 能源产业的迅猛发展产生了多元化的新型金融市场服务需求,各能源交易公司参与能源市场交易难免存在大量的隐私数据。运用数字孪生技术的信息安全防御机制,对网络信息攻击行为进行特征挖掘,构建与数据完整性攻击相关的最优特征属性集;建立安全风险评估准入机制,联合将能源交易信息的安全风险降到最低。
七、数字孪生技术的应用前景
1.部署策略
随着云计算、大数据、物联网、AI、区块链等为代表的新一代数字化技术的快速发展与应用,数字孪生技术在智慧能源行业有广阔的发展前景。根据智慧能源系统的运行需求,研发智慧能源系统的数字孪生APP。随着5G和大数据时代的到来,智慧能源系统的数字孪生APP将为我国能源领域的转型升级提供坚实灵活的应用技术支撑。 智慧能源系统的数字孪生APP率先支持常用部署配置,可按照浏览器/服务器(B/S)或客户端/服务器(C/S)架构进行部署,支持手机、平板电脑、个人计算机等访问终端。如果部署于云平台,可实现多人同时访问、协同作业和远程专家指导等服务。通过服务和模式创新,显著提升智慧能源生态系统的工作效率,降低能源产销成本,实现智慧能源系统规划、运行和控制方面的提质增效。
2.应用案例
面向智慧能源系统的数字孪生技术的研究尽管处于起步阶段,但是从细化到智慧能源系统的单个设备,再扩展到多主体复杂能源系统,都具有广阔的应用前景。
数字孪生综合能源系统 综合能源系统的概念最早起源于热电协同运行领域,目前已发展为整合一定区域内多种能源的一体化能源系统。安世亚太数字孪生体实验室构建了热电厂的数字孪生应用案例,相应模型能准确预测热电厂的运行性能;基于系统约束解决管理故障和系统瓶颈问题,为日常维修或更换提供前瞻性指导,对停机后的工作优先顺序进行评估。
该案例以评估冷凝器内结构影响为例,判断积垢对主冷凝器背压有负面影响的概率,为相关设备的设计与运维提供了有效参考。清华大学研究团队借助数字孪生CloudIEPS平台,建立了包含电负荷、冷负荷、热负荷、燃气发电机、吸收式制冷机、燃气锅炉、光伏、蓄电池、蓄冰空调系统等设备在内的数字孪生综合能源系统模型,利用该模型对系统内各装置的容量进行优化来降低系统运行成本。
总之,数字孪生综合能源系统通过工业互联网实现能源系统“源–网–荷”各环节设备要素的连接,采用多物理场、多尺度建模仿真和工业大数据方法构建能源系统的数字孪生模型,进而基于数字孪生模型进行能源系统的状态监测、故障诊断、运行优化,实现综合能源系统的“共智”。
8、对策建议
在能源转型和“互联网 ”背景下,应打破各能源行业的政策壁垒,贯通各能源系统物理连接和交互,建立多种能源优化协调的智慧能源系统。数字孪生技术首先需要构建具有端和云双向数据、信息交互的闭环反馈、优化和决策的支撑平台。该平台是数字孪生技术在智慧能源系统应用的核心环节,有助于解决智慧能源系统发展所面临的技术壁垒和市场壁垒问题,是实现服务的持续创新、需求的即时响应和产业升级优化的有益探索。基于以上背景和思考,本文从技术发展、应用生态和政策建立三方面出发,对数字孪生技术在智慧能源行业的发展提出应用建议。
1.建设技术资源共享平
台,联合攻坚技术发展难题
智慧能源行业的各参与方(如企业、高等院校和科研院所等),不仅需要加快开展面向智慧能源系统的数字孪生技术的体系架构与支撑平台的关键技术研发,还需要加强各方之间的交流合作。建设技术资源共享平台,发挥研究实力较强单位的带头引领作用,分享数字孪生技术应用发展过程中的突破性进展和发展瓶颈判断;加强高等院校和企业之间的合作,联合攻克数字孪生技术实施过程中的关键性技术要素和难点。
2.融合能源生态圈各领域的学科
特色,构建数字孪生综合应用系统
为了更好推进数字孪生技术在能源行业全生命周期中的应用,应加快能源行业的价值创造、信息增值、业务革新与效益挖掘。组织智慧能源生态圈中各领域的力量,结合智慧能源系统多学科融合交叉的特点,研发综合不同领域的、具有较强普适性的数字孪生综合应用系统,包括“数据链”设计技术、数字孪生建模技术和动态交互技术等。
通过建立先期试点工程,再逐步推进至整个智慧能源行业的方式,减少各领域之间的壁垒,发挥数字孪生技术在构建数字孪生智慧能源生态中的综合效应。
3.促进数字孪生技
术发展的标准建设
数字孪生标准建设正处于起步阶段,已有国际标准组织发起了数字孪生标准编制工作。我国的数字孪生标准制定尚处于初级阶段,缺乏数字孪生相关术语和适用准则等标准参考,影响了数字孪生技术在智慧能源领域的落地应用,亟需启动开展数字孪生相关标准的制定。同时,教育和科研机构尽快制定相关人才培养方案,鼓励相关资源向智慧能源行业的数字孪生技术方向倾斜,增强技术推广过程中的应用型人才培育;以全球视野和格局进行人才培养和技术交流,逐步缩小与发达国家的差距,为实现我国能源系统的数字化转型提供坚强的基础支撑。