壳体结构被广泛应用于工程实际中,例如航空航天工程中的飞机、火箭,机械、石化、电力等部门的各类容器,以及航海和海洋工程的船舰、潜艇,土木、水利工程中的穹顶、拱坝等。其特点是结构一个方向的尺度(厚度)远小于其它方向的尺度,且变形以弯曲为主,此时可以采用壳单元模拟该结构。壳单元可以承受面内拉伸应力和弯曲应力,采用板壳单元模拟这种结构可以大大节省计算时间,并且增加求解精度。
如果结构构件某一方向的尺寸与其它两个方向相比非常小,小到无法承受横向载荷,此时构件相当于一个只能承受面内拉伸(或张力)载荷的薄膜。对空间薄膜构件进行离散化的单元,称为空间膜单元。膜单元经常被用来表示固体结构中的薄加筋构件,它可以在单元平面上提供强度,而没有弯曲刚度,也可以模拟织物、鼓面和客车蒙皮等构件。
LiToSim是一款完全国产自主可控,具有国际先进水平的通用有限元软件。LiToSim包含丰富的单元类型,包括壳单元、膜单元,经过案例对标验证,LiToSim壳单元和膜单元的模拟结果与主流商用软件计算结果相当。
曲面壳表面受压力载荷作用,两端固定,采用三角形壳单元模拟,如图1所示。
图1. 曲面壳受压力载荷作用模型示意
首先启动LiToSim,点击菜单栏文件→新项目,弹出新工程项目对话框,如图2所示。在弹出的对话框中选择分析类型:固体力学→静态,点击OK,并命名新工程即可完成新工程创建,如图3所示。
图2. 创建新工程项目
图3. 新建工程项目
在左侧模型树网格模块处单击鼠标右键,选择导入,将网格文件(S3_L_iso_cy.msh)导入工程中,如图4所示。
图4. 导入网格文件
在模型画布中单击鼠标右键,选择拾取单元→单元,在弹出的对话框中指定选择模式→方框,在模型画布中框选全部单元,如图5所示。
图5. 选择单元示意图
然后,在左侧模型树单元处单击鼠标右键,选择单元类型,在弹出的单元类型编辑对话框中,选择单元类型为Plane3D,并设置壳单元厚度以及厚度方向积分点个数,参数设置如图6所示,点击确定。
图6. 设置单元类型相关参数
左侧模型树材料模块处单击鼠标右键,选择指定材料,在弹出的材料库对话框中编辑材料参数如图7所示,点击设置,然后点击确定。
图7. 设置材料参数
选择需要施加约束的节点,如图8所示,并在左侧模型树边界模块处单击鼠标右键,选择位移,在弹出的对话框中设置边界条件,点击确定,如图9所示。
图8. 选择节点
图9. 设置边界条件
选中整个模型区域,在左侧模型树载荷模块处单击鼠标右键,选择压力,设置压力载荷,如图10所示。
图10. 设置载荷条件
在求解模块单击鼠标右键,进行求解参数设定,设置相关参数如图11所示。设置好后,在左侧模型树Setup1处单击鼠标右键选择求解,提交求解器进行计算。
图11. 设置求解参数
鼠标右键点击结果→创建云图,弹出对话框如图12所示,然后确定,即可查看云图,UX结果云图如图13所示;同时,鼠标右键点击UX→创建动画,即可查看变形动画,如图14所示。
图12. 创建云图对话框
图13. UX结果云图
图14. UX结果动画
在算例1的基础上,修改载荷条件为加载集中力,同时修改求解类型为大变形,载荷、求解具体设置如下图15-图16所示。计算结果与ABAQUS的对比如图17所示。
图15. 设置载荷条件
图16. 设置求解参数
Z字形壳一端固定,另一端施加集中力载荷,如图18所示。计算结果与ABAQUS的对比如图19所示。
图18. 模型示意
图19. LiToSim与ABAQUS结果对比
在实体单元的外表面加上膜单元,一端固定,另一端施加集中力载荷,如图20所示。未加膜单元时LiToSim与ABAQUS计算结果对比如图21所示,加上膜单元后LiToSim与ABAQUS计算结果对比如图22所示。
图20. 模型示意
图21. 未加膜单元时的结果对比
图22. 加膜单元时的结果对比
对比图21和图22的结果可以看出,在实体单元表面附加一层膜单元,最大的等效应力降低,说明膜单元可以一定程度上提高实体单元的刚度。
通过以上案例求解结果可以看出,LiToSim求解壳单元与膜单元案例的结果与主流商用软件计算结果相当,可应用于实际工程的壳与膜结构的仿真。
感谢西南交通大学对文中ABAQUS计算结果提供支持。