无网格方法(Mesh-less method)是在数值计算中不需要生成网格,而是按照一些任意分布的坐标点构造插值函数离散控制方程,就可方便地模拟各种复杂形状的流场。
为何采用无网格法
现有的数值计算方法在某些工程问题中存在网格的束缚,使得计算遇到很大的困难,这些问题包括:
1)工业材料冲压成型过程中的局部大变形;
2)动态裂纹扩展;
3)高速撞击;
4)材料的相变;
5)冲击破坏;
6)流固耦合;
7)材料破坏与失效;
8)大爆炸过程,等。
在计算上述问题时,基于网格的方法在计算过程中出现网格畸变,严重地影响解的精度,降低计算效率甚至导致计算失效,这时需要重新划分网格。网格划分对于简单的问题不存在困难,但是对于比较复杂的区域尤其是三维问题,网格的重新划分是十分困难的工作。
该法大致可分成两类:
以Lagrange方法为基础的粒子法(Particle method),如光滑粒子流体动力学(Smoothed particle hydrodynamics,简称SPH)法,和在其基础上发展的运动粒子半隐式(Moving-particle semi-implicit,简称MPS)法等。
以Euler方法为基础的无格子法(Gridless methods),如无格子Euler/N—S算法(Gridless Euler/Navier-Stokes solution algorithm)和无单元Galerkin法(Element free Galerkin,简称EFG)等。
无网格方法可以方便地利用坐标点计算模拟复杂形状流场计算,但不足之处是在高雷诺数流动时提高数值计算精度较困难。
无网格方法中比较常见的还有径向基函数方法(Radious Basis Function),主要使用某径向基函数(如(MQ)f(r)=r^5)的组合,来逼近原函数。吴忠敏院士在这方面有比较突出的工作。以上方法中,无网格伽辽金法成为目前影响最大,应用最广的无网格计算方法。
无网格求解过程