来源:集智俱乐部(ID:swarma_org),作者:Moonscar、Dorr,木子二月鸟,打豆豆
一、什么是非线性系统?
在数学及科学中,非线性系统Nonlinear System是一种输出的变化与输入的变化不成比例的系统。大多数系统在本质上是非线性的,因而非线性问题引起了工程师、生物学家、物理学家、数学家和许多其他科学家的兴趣。
描述变量随时间变化的非线性动力系统与较之简单得多的线性系统相比,可能显得混沌、不可预测或违反直觉。
通常,非线性系统的行为在数学上被描述为一组非线性的联立方程组,其中未知数(或微分方程中的未知函数)作为一个高于一次的多项式变量出现,或者作为一个非一次多项式函数的参数出现。
换句话说,在非线性方程系统中,待解的方程不能被写成未知变量或函数的线性组合。无论方程中是否有已知的线性函数,系统都可以被定义为非线性。特别是当一个微分方程的未知函数及其导数是线性的,即使其他变量是非线性的,也称该方程是线性的。
在线性系统中,整体等于部分和,描述线性系统的方程满足叠加原理,作用的总和正好等于每一部分作用相加的代数和,这意味着每一部分作用都是独立的、互不相关的;而在普遍存在的非线性系统中,作用的总和不等于每一部分作用相加的代数和,因为系统内部要素之间存在着复杂的非线性相互作用。
由于非线性动力学方程难以求解,通常用线性方程来近似非线性系统(线性化 Linearization)。这种方法对于一定范围的输入和某些精度要求下的效果不错,但一些有趣的现象如孤子Soliton、混沌Chaos 和奇点Singularity 在线性化后被隐藏。
因此,非线性系统的动态行为在某些方面可能看起来是违反直觉的、不可预测的、甚至是混沌的。尽管这种混沌行为可能感觉很像随机行为,但它实际上并不是随机的。例如,天气的某些方面被认为是混沌的,其系统某部分的微小扰动就会产生复杂的整体影响。这种非线性是目前技术无法进行精确长期预测的原因之一。
有些作者用非线性科学这一术语来研究非线性系统。这一术语引起了其他人的争议:
“使用‘非线性科学’这样的术语,就如同把动物学里大部分对象称作‘非大象动物’研究一样可笑。”
——斯塔尼斯拉夫·乌拉姆 Stanislaw Ulam
二、定义
在数学中,线性映射(或线性函数)f(x) 满足以下两个性质:
可加性Additivity(叠加原理 Superposition principle):
齐次性Homogeneity:
当α 是有理数或实数,且f(x) 是连续函数时,由可加性可以推出齐次性。但当α 是复数时,可加性不能导出齐次性。
例如,反线性映射 (antilinear map) 是可加的,但不是齐次的。可加性和齐次性条件经常组合,称为叠加原理:
对一个写成f(x)=C的方程,若 f(x) 是线性映射(如上定义),则称其为线性的 Linear,否则称为非线性的 Nonlinear。若C=0,该方程称为是齐次的。
定义f(x)=C 是非常具有一般性的,因为x 可以是任意合理的数学对象(数字、向量、函数等),函数f(x) 实际上可以是任意映射,包括有相关约束(如给定边界值)的积分或微分。若f(x) 包含对x 的微分运算,则该方程为微分方程。
线性Linear、非线性Nonlinear、亚线性Sublinear、超线性Superlinear:描述量与量之间的一种变化关系,例如y=a b*xn,其中n>1。
当n=1时,表示为线性关系;
当n≠1时,表示为非线性关系;
当0<n<1时,表示为亚线性关系;
当n>1时,表示为超线性关系。
亚线性与超线性属于非线性变化关系范畴。当两个变量之间存在亚线性关系时,其典型特性是因变量的变化速率会随着自变量的增大而减小,即其一阶导数会随着自变量的增大而减小;两个变量之间存在超线性关系时,其典型特性是因变量的变化速率会随着自变量的增大而增大,即其一阶导数会随着自变量的增大而增大。
三、非线性代数方程
非线性代数方程,又称多项式方程,由某多项式(次数大于1)等于零定义。例如:x² x-1=0。对于一个单一的多项式方程,求根算法可用于其求解(即找到满足该方程的变量的值集)。而代数方程组则相对复杂,其研究是现代数学的较难分支——代数几何领域的动力之一。
甚很难判断一个给定的代数系统是否有复数解(见希尔伯特零点定律 Hilbert's Nullstellensatz)。不过,对于具有有限个复数解的系统的多项式方程组,我们现在已经有了充分的理解,并且找到了有效的求解方法。
四、非线性递推关系
非线性递归关系中,序列的连续项被定义为其前项的非线性函数。非线性递归关系的例子有logistic 映射和定义各种霍夫斯塔特序列Hofstadter Sequences 的关系。
非线性离散模型代表了一类广泛的非线性递归关系,包括NARMAX(外部输入非线性自回归移动平均)模型和相关的非线性系统辨识和分析程序。这些方法可用于研究时域、频域和时空域的广泛复杂非线性行为。
五、非线性微分方程
若一个微分方程组不是线性系统,则称其为非线性的。涉及非线性微分方程的问题非常多样,对不同问题的解决或分析方法也不相同。非线性微分方程的例子有流体力学中的纳维-斯托克斯方程Navier-Stokes Equations 和生物学中的洛特卡-沃尔泰拉方程Lotka-Volterra Equations。
非线性问题最大的困难之一是通常不可能将已知的解组合成新的解。例如,在线性问题中,可以根据叠加原理以一族线性独立的解构造通解。
一个很好的例子是带有狄利克雷边界条件Dirichlet Boundary Conditions 的一维热传导问题,其解可以写成(随时间变化)不同频率的正弦波的线性组合,这使得解非常灵活。而对非线性方程,通常可以找到几个非常特殊的解,但是此时叠加原理不适用,故无法构造新的解。
一阶常微分方程,尤其是自治(自主)方程 (autonomous equations),通常可以用分离变量法来精确求解。例如,非线性方程du/dx=-u²。将u=1/x C 作为一般解(也有特解u=0,对应于C 趋于无穷时的一般解的极限)。该方程是非线性的,因为它可以改写成du/dx u²=0。方程的左边不是u 及其导数的线性函数。注意,若将u² 项替换为u,该问题将变为线性的(指数衰减Exponential Decay问题)。
二阶和高阶常微分方程(更一般地说,非线性方程组)很少能产生封闭解,而隐式解和非初等函数积分形式的解较为常见。非线性常微分方程定性分析的常用方法包括:
检查是否有任意守恒量Conserved Quantities(特别是在哈密顿系统Hamiltonian System中)
检查是否有类似守恒量的耗散量(见李雅普诺夫函数Lyapunov Function)
基于泰勒展开Taylor Expansion的线性化
将变量进行代换以便更好的进行研究
分岔理论Bifurcation Theory
摄动理论Perturbation Theory(也可应用于代数方程)
研究非线性偏微分方程最常用的基本方法是变量代换(或转换问题),使变换后的问题更简单(甚至可能变为线性的)。有时可以将此类方程转化成一或多个常微分方程(如同分离变量法所示),此时不论得到的常微分方程是否可解,但是对研究问题总是有用的。
另一个流体力学和热力学中常见的策略(虽然不是数学上的)是利用尺度分析Scale Analysis 将一特定边界条件下简化一般自然方程。例如,在描述圆管内一维层流的瞬态时,非线性的纳维-斯托克斯方程Navier-Stokes equations, 可以简化为一个线性的偏微分方程;尺度分析提供了层流和一维流动的条件,也产生了简化的方程。其他方法包括:检查特征线法及前面所述研究常微分方程的方法。
图1 单摆的图解
图2 单摆的线性化
一个经典的被广泛研究的非线性问题是重力影响下的单摆的动力学。利用拉格朗日力学Lagrangian Mechanics,可以证明单摆的运动可以用无量纲的非线性方程d²θ/dt² sin(θ)=0 描述,其中重力指向“下”,θ 是摆与其静止位置形成的角度。“解”这个方程的方法之一是用dθ/dt 作为积分因子Integrating Factor,最终得
这是一个含椭圆积分Elliptic Integral 的隐式解。这个“解”通常没什么用,因为这个解的大部分性质都隐藏在非初等函数积分中(除非C0=2,否则是非初等的)。
另一种解决这个问题的方法是,利用泰勒展开将任意非线性项(此时为正弦函数项)在某些点进行线性化。例如,在θ=0的点附近线性化(称为小角度近似)为d²θ/dt² θ=0,因为θ≈0时,有sin(θ)≈θ。这是一个简谐振子Simple Harmonic Oscillator ,对应于摆在其路径底部附近的摆动。另一种线性化方法是,在θ=π 附近线性化,对应于运动到最高点的摆d²θ/dt² π-θ=0。因为θ≈π 时,有sin(θ)≈π−θ。这个问题的解含双曲正弦曲线;注意到不同于小角度近似,它是不稳定的,这意味着|θ|通常会无限增长(但解也有可能是有界的)。这就解释了摆在最高点达到平衡的困难,此时实际上是一种不稳定的状态。
一个更有趣的线性化可能是在θ=π/2附近,此时sin(θ)≈1:d²θ/dt² 1=0。这相当于一个自由落体问题。把这样线性化的结果合在一起看,就能得到有关摆的运动的非常有用的图像。利用其他方法寻找(精确的)相图Phase Portrait 和估计周期。
六、非线性动力学行为的类型
振幅死亡Amplitude Death——系统内的某振荡因系统的自回馈或与其他系统的某种相互作用而停止的现象。
混沌Chaos——系统内的值无法无限期地预测到遥远的未来;波动是非周期性的。
多稳态Multistability——两或多个稳态的存在。
孤子Solitons——自增强的孤立波。
极限环Limit Cycles——吸引不稳定不动点的渐近周期轨道。
自激振荡Self-oscillations——开放耗散物理系统中的反馈振荡。