作者:吴华春上海安世亚太公司
本文对DEFORM软件使用时常出现的问题进行了深入探讨,并针对应变值不变的问题提出了解决方案,有利于技术工程师在实际使用时进行更好的模拟仿真。
在变形中,有一种相对常见的情况:零件变形,但有效应变保持为0,其他变量(如应力)的行为异常。报错信息如图1所示,工件的单元应力为0。(注:图-1所示错误多发生在用户自定义材料中,因此用户首先要确认输入的材料参数是否符合材料本构模型。)当应变率非常小时,应变值不变的问题很常见,并且与被称为"极限应变率"的值相关。
图1 单元应力为0的错误信息
01什么是极限应变率?
为了改善收敛,DEFORM 使用被称为“极限应变速率(LMTSTR)”的值来识别零件的刚性或几乎刚性区域,并计算变形率接近零的区域的流动应力。
一般来说,流动应力和应变率之间的关系是非线性的,由流动应力定律定义。 在低于极限应变速率的值下,可假定流动应力和应变率关系在0和(极限应变率)下的流动应力之间是线性的。
根据计算目的,应变率低于极限应变率的单元被视为“刚性”。它们不会计算应变,并且报告的有效应力可能相当低。
02如何计算极限应变率?
这对于刚体运动的模拟是必要的,例如零件在模具中下降的早期阶段可能就会发生此类情况。
然而,当变形速度足够慢,单元发生变形,但仍然低于极限值时,就会产生问题。若零件没有显示出应变,可能会出现相当大的变形。
04此问题如何解决?
图2 平均应变率和极限应变率设置
图3 KEY文件中平均应变率和极限应变率设置
模拟除外,工件的刚性部分将看到高持续应力低于屈服应力,例如机械切削加工模拟和自由挤压。在这些情况下,刚性区域可能倾向于在持续的应力下“蠕变”。此时,应使用比平均应变率小5个数量级的极限应变速率。
05如何计算不同条件下的平均应变率?
■ 对于涉及工件非变形区域大的恒定应力的模拟:刚性区域可能会稍微“漂移”,从而造成小而潜在的重大误差。对于这种类型的模拟,可使用5个数量级比率(即AVGSTR = 1,LMTSTR = 1e-5),典型情况例如自由挤出和切削仿真。
图4 流动应力与极限应变率的比较
06总结
■ 涉及快速变形的刚性“漂移”时:调低极限应变率LMTSTR到1e-5。