今日更新:Journal of the Mechanics and Physics of Solids 1 篇,Mechanics of Materials 1 篇,International Journal of Plasticity 1 篇,Thin-Walled Structures 2 篇
Distinguish the calibration of conventional and data-driven constitutive model: the role of state boundary surfaces
Zhihui Wang, Roberto Cudmani, Andrés Alfonso Peña Olarte
doi:10.1016/j.jmps.2025.106122
区分传统和数据驱动本构模型的校准:状态边界面的作用
In conventional constitutive models for granular materials, calibration involves estimating a few parameters within known mathematical expressions. In contrast, data-driven constitutive models couple the model structure and parameters. Addressing this fundamental difference, the development of constitutive models based on Physics-encoded Neural Networks (PeNN) is guided from the perspective of conventional model development, highlighting similarities and differences. The crucial physical information that influences PeNN is explained, and the incorporation of three key state boundary surfaces in pressure–porosity space—critical state, loosest state, and densest state—via physics-informed deep learning is detailed. Physics-informed calibration is performed using the augmented Lagrangian method; then, the calibrated models undergo extensive drained and undrained simulations. Results indicate that using only physical information from state boundary surfaces, without data within these boundaries, fails to calibrate data-driven models; thus, boundary surface information represents partial physical information. While combining partial physical information with reasonably distributed data can improve model development under limited experimental data, adding more partial physical information and data does not necessarily enhance the results. The finding aims to bridge the gap between conventional and data-driven constitutive models, hopefully increasing the reliability and interpretability of data-driven models.
在颗粒材料的传统本构模型中,校准涉及在已知的数学表达式中估计一些参数。相反,数据驱动的本构模型将模型结构和参数耦合在一起。为了解决这一根本差异,基于物理编码神经网络(PeNN)的本构模型的开发从传统模型开发的角度进行指导,突出异同。解释了影响PeNN的关键物理信息,并通过物理信息深度学习详细介绍了压力-孔隙度-空间临界状态、最松散状态和最密集状态下三个关键状态边界表面的结合。使用增广拉格朗日方法进行物理信息校准;然后,校准的模型进行广泛的排水和不排水模拟。结果表明,仅使用来自状态边界面的物理信息,而不使用这些边界内的数据,无法校准数据驱动的模型;因此,边界表面信息代表部分物理信息。在实验数据有限的情况下,将部分物理信息与合理分布的数据相结合可以改善模型的开发,但添加更多的部分物理信息和数据并不一定能提高结果。这一发现旨在弥合传统和数据驱动的本构模型之间的差距,有望提高数据驱动模型的可靠性和可解释性。
Lithiation-induced stress and damage in electrode materials: effects of current variations
Yong Li, Lili Dai, Wei Feng, Kai Zhang, Fuqian Yang
doi:10.1016/j.mechmat.2025.105332
锂离子诱导的应力和电极材料的损伤:电流变化的影响
Lithium-ion batteries likely experience different structural evolution during electrochemical charging and discharging under dynamic environments from the corresponding one under “conventional” cycling conditions. In this work, we introduce a time-dependent influx in the analysis of the evolution of stress, strain, mechanical and chemical damages under galvanostatic operation. The time-dependent term is presented in two different forms – one in the form of a set of cosine terms and the other in the form of a Gaussian pulse. For the time-dependent term in the form of a single cosine term, both the angular frequency and amplitude contribute to the evolution of stress, strain, mechanical and chemical damages. The cosine term with a larger amplitude and/or a smaller angular frequency has a larger effect on the structural integrity of the electrode materials in LIBs than the corresponding one with a smaller amplitude and/or a larger angular frequency. For the time-dependent term in the form of a Gaussian pulse, the degradation of LIBs is dependent on the energy coefficient of the Gaussian pulse. Increasing the energy coefficient of the Gaussian pulse leads to the increase of mechanical and chemical damages.
锂离子电池在动态环境下的电化学充放电过程可能会经历与“常规”循环条件下不同的结构演变。在这项工作中,我们在恒流操作下的应力、应变、机械和化学损伤的演变分析中引入了时间相关的内流。时间相关项以两种不同的形式呈现-一种以余弦项的形式呈现,另一种以高斯脉冲的形式呈现。对于单一余弦项形式的时间相关项,角频率和幅值都对应力、应变、力学和化学损伤的演化有贡献。振幅较大和/或角频率较小的余弦项比振幅较小和/或角频率较大的余弦项对电极材料结构完整性的影响更大。对于高斯脉冲形式的时变项,锂离子电池的退化取决于高斯脉冲的能量系数。随着高斯脉冲能量系数的增大,材料的机械损伤和化学损伤增加。
Tailoring fracture resistance of a metastable Fe42Mn28Co10Cr15Si5 high entropy alloy by intrinsic toughening
Manoj Yadav, Niraj Nayan, Krishanu Biswas, N.P. Gurao
doi:10.1016/j.ijplas.2025.104315
基于本征增韧的亚稳态Fe42Mn28Co10Cr15Si5高熵合金的定制抗断裂性能
Metastable high entropy alloys (HEAs) provide an exceptional combination of strength and ductility by the synergistic operation of slip, twinning, and transformation; however, their fracture behaviour remains unexplored. In the present investigation, tensile and elastic-plastic fracture toughness tests with a 2D digital image correlation setup were carried out for different microstructural states of Fe42Mn28Co10Cr15Si5 HEA. Finite element analysis (FEA) coupled with combinatorial site-specific electron backscatter diffraction helps in developing a meso and micro scale mechanistic understanding of the extrinsic and intrinsic toughening processes. The calculated J-integral and plastic zone size using FEA simulations were corroborated with experimental results. The crack growth resistance (J-R) curve was evaluated across three distinct processing conditions: hot rolled (HR), 1 h annealed at 1173 K (AN1173), and 4 h annealed at 1373 K (AN1373). The HR material exhibited higher strength (yield strength = 630 ± 8 MPa), while the AN1373 demonstrated highest ductility (0.74 ± 0.04). The mode I plane strain fracture toughness was highest for the AN1373 (125.4 ± 15.8 MPa.m0.5) and lowest for the AN1173 (46.3 ± 7.4 MPa.m0.5). The Cr-rich sigma phase at grain boundaries in the HR and AN1173 led to pronounced intergranular fracture, resulting in lower fracture toughness and plasticity. The multiple variants of martensite in the AN1373 microstructural state, results in refined microstructure by interactions of transformation variants and dislocations that enhance the strength, ductility, and crack tip plasticity. The findings underscore the significant impact of intrinsic toughening on the fracture and deformation behaviour of the Fe42Mn28Co10Cr15Si5 HEA.
亚稳态高熵合金(HEAs)通过滑移、孪晶和相变的协同作用,提供了强度和延展性的卓越组合;然而,它们的断裂行为仍未被研究。在本研究中,采用二维数字图像相关装置对Fe42Mn28Co10Cr15Si5 HEA的不同显微组织状态进行了拉伸和弹塑性断裂韧性测试。有限元分析(FEA)与组合位特异电子背散射衍射相结合,有助于对外在和内在增韧过程进行中观和微观的机制理解。有限元模拟计算的j积分和塑性区尺寸与实验结果相吻合。通过三种不同的加工条件:热轧(HR)、1173 K退火1 h (AN1173)和1373 K退火4 h (AN1373)来评估裂纹扩展阻力(J-R)曲线。HR材料具有较高的强度(屈服强度 = 630±8 MPa),而AN1373材料具有最高的延展性(0.74±0.04)。AN1373的I型平面应变断裂韧性最高(125.4±15.8 MPa.m0.5), AN1173的I型平面应变断裂韧性最低(46.3±7.4 MPa.m0.5)。HR和AN1173晶界处富含cr的sigma相导致明显的晶间断裂,导致断裂韧性和塑性降低。在AN1373显微组织状态下,马氏体的多种变体通过相变变体和位错的相互作用使组织细化,从而提高了强度、延展性和裂纹尖端塑性。研究结果强调了本征增韧对Fe42Mn28Co10Cr15Si5 HEA断裂和变形行为的显著影响。
Modified consistent element-free Galerkin method applied to Reissner–Mindlin plates
Marcelo Silveira Pereira, Mauricio Vicente Donadon
doi:10.1016/j.tws.2025.113185
改进的一致无元素伽辽金法在Reissner-Mindlin板上的应用
This study addresses the solution of static, modal, buckling and aeroelastic analyses associated with rectangular plates based on the first-order shear deformation theory (FSDT), i.e., Reissner–Mindlin plates. For this purpose, a Modified Consistent Element-Free Galerkin (MCEFG) method was applied in combination with the moving least-squares (MLS) method for the obtainment of the admissible functions. Three improvements are implemented for the application of the MCEFG method: a new weighting function that diminishes the support radius influence in the MLS method, a stable and efficient numerical integration that guarantees the consistency of the method and an imposition of essential boundary conditions that do not require the augmentation of the weak form. Comparison studies on the displacement and generalized force fields, eigenfrequencies, buckling loads and flutter velocity are performed using numerical and theoretical results that confirms the accuracy and efficiency of the proposed methodology. Finally, the study considers four boundary conditions in order to guarantee the applicability of the method in different scenarios.
本研究基于一阶剪切变形理论(FSDT),即Reissner-Mindlin板,解决了与矩形板相关的静力、模态、屈曲和气动弹性分析。为此,将改进的一致无单元伽辽金法(MCEFG)与移动最小二乘法(MLS)相结合,得到了可容许函数。对mefg方法的应用进行了三个改进:一个新的加权函数,减少了MLS方法中支持半径的影响,一个稳定有效的数值积分,保证了方法的一致性,以及施加了不需要增加弱形式的基本边界条件。利用数值和理论结果对位移和广义力场、特征频率、屈曲载荷和颤振速度进行了对比研究,验证了所提方法的准确性和有效性。最后,研究考虑了四种边界条件,以保证方法在不同场景下的适用性。
Geometry and Size Dependent Microstructure and Crack Formation in Rene 41 Superalloy Fabricated by Laser Powder Bed Fusion
Sila Ece Atabay, Fatih Sikan, Mathieu Brochu
doi:10.1016/j.tws.2025.113211
激光粉末床熔合制备Rene 41高温合金的几何尺寸相关组织和裂纹形成
This study provides a systematic investigation into the size- and geometry-dependent microstructural evolution and cracking susceptibility of LPBF-fabricated Rene 41. By coupling experimental microstructural analysis with thermal modeling, this research uniquely identifies the relationship between geometry-specific thermal histories, carbide coarsening, and liquation cracking. Four different geometries with varying thickness were fabricated with the identical process parameters. It was found that the grain size and morphology are not affected by the part size. However, the thinner parts exhibited coarser sub-grain structures compared to the thicker ones. The crack formation was observed for the parts with cross-sections smaller than 1 mm, whereas thicker parts had high density without any defects. The cracks were observed in the interdendritic regions, suggesting that liquation cracking was the active micro-crack formation mechanism. The detailed microstructural analysis combined with a thermal finite element analysis proved that the heat extraction efficiency was lower for thinner parts causing a lower cooling rate and coarser carbides, making them more susceptible to constitutional liquation. Microhardness measurements were conducted for each geometry and correlated with the observed microstructural variations. The findings highlight the critical need for geometry-specific optimization of LPBF process parameters to mitigate cracking and achieve microstructural uniformity, offering valuable insights into the fabrication of complex, high-performance aerospace components.
本研究对lpbf制备的Rene 41的尺寸和几何相关的显微组织演化和开裂敏感性进行了系统的研究。通过将实验显微结构分析与热建模相结合,本研究独特地确定了几何特定热历史、碳化物粗化和液化开裂之间的关系。在相同的工艺参数下,制作了四种不同厚度的几何形状。晶粒尺寸和形貌不受零件尺寸的影响。然而,与较厚的部分相比,较薄的部分表现出更粗的亚晶粒结构。截面小于1mm的零件有裂纹形成,而较厚的零件密度高,没有缺陷。在枝晶间区观察到裂纹,表明液化裂纹是主动微裂纹形成机制。详细的显微组织分析结合热有限元分析证明,薄件的抽热效率较低,导致冷却速率较低,碳化物较粗,更容易发生本构液化。对每个几何形状进行显微硬度测量,并与观察到的显微结构变化相关联。研究结果强调了对LPBF工艺参数进行几何特定优化的迫切需要,以减轻裂纹并实现微结构均匀性,为复杂、高性能航空航天部件的制造提供了有价值的见解。