首页/文章/ 详情

90%的工程师会忽略的 40 个实用模拟电路小常识,你是其中之一吗?

4小时前浏览4

第2672期

1、电接口设计中,反射衰减通常在高频情况下变差,这是因为带损耗的传输线反射同频率相关,这种情况下,尽量缩短PCB走线就显得异常重要。

2、稳压二极管就是一种稳定电路工作电压的二极管,由于特殊的内部结构特点,适用反向击穿的工作状态,只要限制电流的大小,这种击穿是非破坏性的。

3、PN 结具有一种很好的数学模型:开关模型→二极管诞生了→再来一个PN结,三极管诞生了。


4、高频电路中,必须考虑 PN 结电容的影响(正向偏置为扩散电容,反向偏置为势垒电容)。

5、在高密度的场合下,由于收发信号挨在一起,很容易发生串扰,这在布线时要遵守 3W 原则,即相邻 PCB 走线的中心线间距要大于 PCB 线宽的 3 倍。在插卡设备,接插件连接的位置,要有许多接地针,提供良好的射频回路。

6、双极型管是电流控制器件,通过基极较小的电流控制较大的集电极电流;MOS 管是电压控制器件,通过栅极电压控制源漏间导通电阻。


7、三极管是靠载流子的运动来工作的,以 NPN 管射极跟随器为例,当基极加不加电压时,基区和发射区组成的pn结为阻止多子(基区为空穴,发射区为电子)的扩散运动,在此 PN结处会感应出由发射区指向基区的静电场(即内建电场)。

8、肖特基二极管(SBD)适用于高频开关电路,正向压降和反向压降都很低(0.2V)但是反向击穿电压较低,漏电流也较大。

9、抖动特性绝大部分取决于输出芯片的特性,不过,如果 PCB 布线不当,电源滤波不够充分,时钟参考源太冲太大也会增加抖动成分。信号线的匹配对抖动产生直接的影响。特别是芯片中含有倍频功能,本身相位噪声较大。


10、极型选择是指 BJT 是用 PNP 还是 NPN 管,这应该在确定电源形式时同时考虑。有些三极管的外壳与某个电极相连,对于硅管来说往往是集电极。在需要基极接地时应考虑这个因素。

11、场效应晶体管与 BJT 在工作过程中有很大的区别:BJT 中的电荷载体是空穴或被击出的少量的“少子”,FET 中的电荷则是数目相对多几个数量级的自由电子,“多子”。

12、发射极正偏,集电极反偏是让 BJT 工作在放大工作状态下的前提条件。三种连接方式:共基极,共发射极(最多,因为电流,电压,功率均可以放大),共集电极。判别三种组态的方法:共发射极,由基极输入,集电极输出;共集电极,由基极输入,发射极输出;共基极,由发射极输入,集电极输出。


13、三极管主要参数:电流放大系数β,极间反向电流,(集电极最大允许电流,集电极最大允许耗散功率,反向击穿电压=3个重要极限参数决定 BJT 工作在安全区域)。

14、因 J-FET 的 Rgs 很高,在使用时首先应注意无静电操作,否则很容易发生栅极击穿;另外就是在设计电路时应仔细考虑各极限参数,不能超出范围。将J-FET当做可变电阻使用时应保证器件有正确的偏置,不能使之进入恒流区。

15、射极偏置电路:用于消除温度对静态工作点的影响(双电源更好)。


16、三种 BJT 放大电路比较:共射级放大电路,电流、电压均可以放大。共集电极放大电路:只放大电流,跟随电压,输入R 大,输出 R 小,用作输入级,输出级。共基极放大电路:只放大电压,跟随电流,高频特性好。

17、去耦电容:输出信号电容接地,滤掉信号的高频杂波。旁路电容:输入信号电容接地,滤掉信号的高频杂波。交流信号针对这两种电容处理为短路。

18、MOS-FET在使用中除了正确选择参数以及正确的计算外,最值得强调的仍然是防静电操作问题,在电路调试、焊接、安装过程中,一定要严格按照防静电程序操作。


19、主流是从发射极到集电极的 IC,偏流就是从发射极到基极的Ib。相对于主电路而言,为基极提供电流的电路就是所谓的偏置电路。

20、场效应管三个铝电极:栅极g,源极s,漏极d。分别对应三极管的基极b,发射极e,集电极c。<源极需要发射东西嘛,所以对应发射极e,栅极的英文名称是gate,门一样的存在,和基极的作用差不多>其中P型衬底一般与栅极g相连。

21、增强型FET必须依靠栅源电压Vgs才能起作用(开启电压Vt),耗尽型FET则不需要栅源电压,在正的Vds作用下,就有较大的漏极电流流向源极(如果加负的Vgs,那么可能出现夹断,此时的电压成为夹断电压Vp***重要特性***:可以在正负的栅源电压下工作)


22、N沟道的MOS管需要正的Vds(相当于三极管加在集电极的Vcc)和正的Vt(相当于三极管基极和发射极的Vbe),而P沟道的MOS管需要负的Vds和负的Vt。

23、VMOSFET有高输入阻抗、低驱动电流;开关速度快、高频特性好;负电流温度系数、无热恶性循环,热稳定型优良的优点。

24、运算放大器应用时,一般应用负反馈电流。

25、差分式放大电路:差模信号:两输入信号之差。共模信号:两输入信号之和除以2。由此:用差模与共模的定义表示两输入信号可得到一个重要的数学模型:任意一个输入信号=共模信号±差模信号/2。


26、差分式放大电路只放大差模信号,抑制共模信号。利用这个特性,可以很好的抑制温度等外界因素的变化对电路性能的影响。具体的性能指标:共模抑制比Kcmr。

27、二极管在从正偏转换到反偏的时候,会出现较大的反向恢复电流从阴极流向阳极,其反向电流先上升到峰值,然后下降到零。

28、在理想的情况下,若推挽电路的两只晶体管电流、电压波完全对称,则输出电流中将没有偶次谐波成分,及推挽电路由已知偶次谐波的作用。实际上由于两管特性总有差异,电路也不可能完全对称,因此输出电流还会有偶次谐波成分,为了减少非线性失真,应尽量精选配对管子。


29、为了获得大的输出功率,加在功率晶体管上的电压、电流就很大,晶体管工作在大信号状态下。这样晶体管的安全工作就成为功率放大器的一个重要问题,一般不以超过管子的极限参数(Icm、BVceo、Pcm)为限度。

30、放大电路的干扰:1、将电源远离放大电路2、输入级屏蔽3、直流电源电压波动(采用稳压电源,输入和输出加上滤波电容)。

31、负反馈放大电路的四种组态:电压串联负反馈(稳定输出电压),电压并联负反馈,电流串联负反馈(稳定输出电流),电流并联负反馈。


32、电压、电流反馈判定方法:输出短路法,设RL=0,如果反馈信号不存在,为电压反馈,反之,则为电流反馈。

33、串联、并联反馈的判定方法:反馈信号与输入信号的求和方式,若为电压形式,则为串联反馈,若为电流形式,则为并联反馈。

34、对于NPN电路,对于共射组态,可以粗略理解为把VE当作“固定”参考点,通过控制VB来控制VBE(VBE=VB-VE),从而控制IB,并进一步控制IC(从电位更高的地方流进C极,你也可以把C极看作朝上的进水的漏斗)。

35、对于数字电路来说,VCC是电路的供电电压,VDD是芯片的工作电压(通常Vcc>Vdd),VSS是接地点;在场效应管(或COMS器件)中,VDD为漏极,VSS为源极,VDD和VSS指的是元件引脚,而不表示供电电压。


36、示波器探头有一条地线和一条信号线,地线就是和示波器输入端子外壳通的那一条,一般是夹子状的,信号线一般带有一个探头钩,连接的话你把示波器地线接到你设备的地,把信号线端子接到你的信号端,注意如果要测量的信号和市电没有隔离,则不能直接测量。

37、驱动能力不足有两种情况:一是器件的输入电阻太小,输出波形会变形,如TTL电平驱动不了继电器;二是器件输入电阻够大,但是达不到器件的功率,如小功率的功放,驱动大功率的喇叭,喇叭能响,但音量很小,其实是输出的电压不够大。

38、滤波电路:利用电抗元件的储能作用,可以起到很好的滤波作用。电感(串联,大功率)和电容(并联,小功率)均可以起到平波的作用。


39、开关稳压电源与线性电源:线性电源,效率低、发热强、但是输出很稳定。开关电源,效率高、发热一般、但输出纹波大,需要平波。

40、由电子电路内因引发的故障类型有:晶体管、电容、电阻等电子元件性能发生改变引发的故障;电子电路中有关线路接触不良引发的故障等。由外因引起的电子电路故障类型有:技术人员使用电子电路时未按照说明要求进行操作;维修技术人员维修程序不规范不科学等。


来源:电磁兼容之家
非线性电源电路电磁兼容电子芯片焊接电场储能
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-03-12
最近编辑:4小时前
电磁兼容之家
了解更多电磁兼容相关知识和资讯...
获赞 31粉丝 159文章 2147课程 0
点赞
收藏
作者推荐

电磁兼容设计中的几个“机密”

电磁兼容设计中的几个“机密”第2645期一、电磁兼容性设计 电磁兼容性是指电子设备在各种电磁环境中仍能够协调、有效地进行工作的能力。电磁兼容性设计的目的是使电子设备既能抑制各种外来的干扰,使电子设备在特定的电磁环境中能够正常工作,同时又能减少电子设备本身对其它电子设备的电磁干扰。1.选择合理的导线宽度由于瞬变电流在印制线条上所产生的冲击干扰主要是由印制导线的电感成分造成的,因此应尽量减小印制导线的电感量。印制导线的电感量与其长度成正比,与其宽度成反比,因而短而精的导线对抑制干扰是有利的。时钟引线、行驱动器或总线驱动器的信号线常常载有大的瞬变电流,印制导线要尽可能地短。对于分立元件电路,印制导线宽度在1.5mm左右时,即可完全满足要求;对于集成电路,印制导线宽度可在0.2~1.0mm之间选择。2.采用正确的布线策略采用平等走线可以减少导线电感,但导线之间的互感和分布电容增加,如果布局允许,最好采用井字形网状布线结构,具体做法是印制板的一面横向布线,另一面纵向布线,然后在交叉孔处用金属化孔相连。为了抑制印制板导线之间的串扰,在设计布线时应尽量避免长距离的平等走线,尽可能拉开线与线之间的距离,信号线与地线及电源线尽可能不交叉。在一些对干扰十分敏感的信号线之间设置一根接地的印制线,可以有效地抑制串扰。为了避免高频信号通过印制导线时产生的电磁辐射,在印制电路板布线时,还应注意以下几点:●尽量减少印制导线的不连续性,例如导线宽度不要突变,导线的拐角应大于90度禁止环状走线等。●时钟信号引线最容易产生电磁辐射干扰,走线时应与地线回路相靠近,驱动器应紧挨着连接器。●总线驱动器应紧挨其欲驱动的总线。对于那些离开印制电路板的引线,驱动器应紧紧挨着连接器。●数据总线的布线应每两根信号线之间夹一根信号地线。最好是紧紧挨着最不重要的地址引线放置地回路,因为后者常载有高频电流。3.抑制反射干扰为了抑制出现在印制线条终端的反射干扰,除了特殊需要之外,应尽可能缩短印制线的长度和采用慢速电路。必要时可加终端匹配,即在传输线的末端对地和电源端各加接一个相同阻值的匹配电阻。根据经验,对一般速度较快的TTL电路,其印制线条长于10cm以上时就应采用终端匹配措施。匹配电阻的阻值应根据集成电路的输出驱动电流及吸收电流的最大值来决定。 二、去耦电容配置 在直流电源回路中,负载的变化会引起电源噪声。例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。配置去耦电容可以抑制因负载变化而产生的噪声,是印制电路板的可靠性设计的一种常规做法,配置原则如下:●电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗干扰效果会更好。●为每个集成电路芯片配置一个0.01uF的陶瓷电容器。如遇到印制电路板空间小而装不下时,可每4~10个芯片配置一个1~10uF钽电解电容器,这种器件的高频阻抗特别小,在500kHz~20MHz范围内阻抗小于1Ω,而且漏电流很小(0.5uA以下)。●对于噪声能力弱、关断时电流变化大的器件和ROM、RAM等存储型器件,应在芯片的电源线(Vcc)和地线(GND)间直接接入去耦电容。●去耦电容的引线不能过长,特别是高频旁路电容不能带引线。 三、印制电路板的尺寸与器件的布置 印制电路板大小要适中,过大时印制线条长,阻抗增加,不仅抗噪声能力下降,成本也高;过小,则散热不好,同时易受临近线条干扰。在器件布置方面与其它逻辑电路一样,应把相互有关的器件尽量放得靠近些,这样可以获得较好的抗噪声效果。时种发生器、晶振和CPU的时钟输入端都易产生噪声,要相互靠近些。易产生噪声的器件、小电流电路、大电流电路等应尽量远离逻辑电路,如有可能,应另做电路板,这一点十分重要。 四、热设计 从有利于散热的角度出发,印制版最好是直立安装,板与板之间的距离一般不应小于2cm,而且器件在印制版上的排列方式应遵循一定的规则:·对于采用自由对流空气冷却的设备,最好是将集成电路(或其它器件)按纵长方式排列,对于采用强制空气冷却的设备,最好是将集成电路(或其它器件)按横长方式排列。·同一块印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集成电路、电解电容等)放在冷却气流的最上流(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却气流最下游。·在水平方向上,大功率器件尽量靠近印制板边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印制板上方布置,以便减少这些器件工作时对其它器件温度的影响。·对温度比较敏感的器件最好安置在温度最低的区域(如设备的底部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局。·设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动路径,合理配置器件或印制电路板。空气流动时总是趋向于阻力小的地方流动,所以在印制电路板上配置器件时,要避免在某个区域留有较大的空域。整机中多块印制电路板的配置也应注意同样的问题。大量实践经验表明,采用合理的器件排列方式,可以有效地降低印制电路的温升,从而使器件及设备的故障率明显下降。来源:电磁兼容之家

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈