科学、工程和社会中的复杂系统是否有共性规律?有望解答这一问题的介科学概念是如何提出的?对于人类可持续发展及科学研究范式的转变有何意义?近日,中国科学院院士、过程工程所研究员李静海详细解读了介科学概念的产生、应用及发展路径,并对介科学在更多学科领域的应用和未来发展进行了全面展望。相关研究成果于11月13日发表在Proceedings of the Royal Society A(DOI: 10.1098/rspa.2024.0031)。
摘要
这篇展望文章并不是对过去一系列工作的简单总结,而是旨在通过回顾整个过程进一步梳理出:(1)激发这一项工作的起因是什么?(2)思维方式是如何从一个具体的工程问题研究逐步演化为介科学概念的?(3)目前研究的焦点和扩展方向是什么?以此阐明将具体工程问题与基础科学中缺失的环节联系起来进行研究的重要性,并同时探索可能存在的共性规律,即介科学的普遍性。
在文章的主体部分,对未来与介科学相关的应用和发展进行了比较全面的展望,这包括介科学在许多不同学科和领域中可能的通用性和应用,并用于分析全球性挑战问题,以及推动CIC指导的人工智能。通过这种方式,许多工程中的挑战性问题——通过其底层的介尺度复杂性来识别——将与未来基础科学的发展密切相关。通过这种方法,我们希望说明基础研究可以解决存在于众多工程问题中的固有复杂性。通过介科学的概念,我们旨在探索复杂性中可能的共性规律。尽管来自多样性的困难和不确定性依然存在,但是从多样性中归纳共性是解决全球挑战、改变科学范式以及填补现有知识体系在不同层次介尺度上缺失环节的可能途径。
1、研究背景:聚焦介尺度复杂结构
我们认为:平均方法无法解决介尺度复杂性难题,因为它混淆了不同尺度的内在相互作用而无法描述系统行为,而考虑每个颗粒细节的直接模拟,比如离散方法,可及的能力难以达到工业规模的要求。
自然地,我们的第一个案例研究是针对气固流态化,然后是湍流管道流动。我们认识到,竞争中协调(CIC)原理对两种情况都有效。此外,我们基于拟颗粒方法[10]进行了直接数值模拟以验证其合理性[11]。
2、研究介尺度结构复杂性策略的逐步形成
3、基于CIC原理的首个实例研究:气固流态化
2.或者,将多目标优化问题在A和B“同等重要”假设下转化成单目标形式
求解EMMS模型,并得到与Nst=min几乎一致的解。
4.CIC原理(EMMS模型)的应用与验证,
及其可能的普适性探索
图7 如A-D所示,采用拟颗粒方法[10]对气固系统的模拟结果表明,控制机制之间的CIC是复杂性的根源。其中,提升管:高度hight = 1000 mm,管径diameter = 250 mm,表观流体速度Ug = 1.32 m s-1,固体循环速率Gs = 12.3 kg s−1;拟颗粒:密度ρf = 1.20 kg m−3(接近环境空气),粒径d = 0.384 mm,流体剪切黏度μ = 1.82 × 10−5 Pa s;固体颗粒:密度ρp = 612 kg m−3(类似于活性炭),粒径Dp = 3.46 mm,修改自文献[12]。
(d)在应对重大全球挑战方面的初步探索
鉴于全球重大挑战性问题固有的多层次复杂性,介科学概念也可以应用于识别和分析联合国SDGs-2030目标的最优实现路径。在文献[42]中,已经利用介科学的CIC原理初步探讨了联合国17个可持续发展目标之间的相互关系。此外,这种基于多层次、多尺度、介科学方法论的分析方法,也适用于碳中和[343]和生物体系[17,30]的研究。这个问题将在第5f节中详细讨论。
5、未来展望
图10 对不同训练数据集,采用不同image_step参数值,在施加和不施加介约束时得到的损失曲线[55]:(a) image_step = 1,(b) image_step = 2,(c) image_step = 3,(d) image_step = 5。
运行这一由上述三个部分组成的系统是十分重要的,然而,这个系统的构建却必须通过全球合作。这就需要在全球层面建立一个合作计划,并有专门的组织模式!
(a)聚焦多层次的介尺度复杂性
当前,全球科学界和整个社会正逐步关注和讨论两个重要议题:一是转变科研范式,二是应对全球重大挑战(比如SDGs,气候变化,人类健康等)[58]。但是,如图12所示,我们很少讨论与此相关的三个重要问题:一是转变科研范式和应对全球挑战如何相互促进?二是现有知识体系缺失的环节是什么?三是如何填补这些缺失的环节以加速范式变革和更有效地应对重大挑战[58,59]?
(b)应用已有知识填补知识缺失环节
参考文献:
[1] Li J, Kwauk M. 1994 Particle-fluid two-phase flow: the energy-minimization multi-scale method. Beijing: Metallurgical Industry Press.
[2] Li J, Tung Y, Kwauk M. 1988 Method of energy minimization in multi-scale modeling of particle fluid two-phase flow. In Circulating Fluidized Bed Technology II, March 14-18, pp. 89–103. Compiegne, France. (doi:10.1016/B978-0-08-036225-0.50013-7)
[3] Li Z, Li J, Liu W. 1984 The model law of hydrodynamics for fluidized beds. In Combustion Conference, Chinese Society of Engineering Thermophysics. Tianjin (In Chinese).
[4] Li J. 1987 Multiscale modeling and method of energy minimization for particle-fluid two-phase flow. PhD Thesis, [Beijing]: Institute of Chemical Metallurgy, Chinese Academy of Sciences (in Chinese).
[5] Li J et al. 2013 From multiscale modeling to meso-science — a chemical engineering perspective. Berlin, Germany: Springer. (doi:10.1007/978-3-642-35189-1)
[6] Li J, Huang W. 2014 Towards mesoscience: the principle of compromise in competition. Berlin, Germany: Springer.
[7] Li J, Huang W. 2018 From multiscale to mesoscience: addressing mesoscales in mesoregimes of different levels. Annu. Rev. Chem. Biomol. Eng. 9, 41–60. (doi:10.1146/annurev-chembioeng-060817-084249)
[8] Li J. 2016 Exploring the logic and landscape of the knowledge system: multilevel structures, each multiscaled with complexity at the mesoscale. Engineering 2, 276–285. (doi:10.1016/J. ENG.2016.03.001)
[9] Li J, Ge W, Wang W, Yang N, Huang W. 2016 Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience. Curr. Opin. Chem. Eng. 13, 10–23. (doi:10. 1016/j.coche.2016.07.008)
[10] Ge W, Li J. 2003 Macro-scale phenomena reproduced in microscopic systems—pseudoparticle modeling of fluidization. Chem. Eng. Sci. 58, 1565–1585. (doi:10.1016/S0009-2509(02)00673-5)
[11] Zhang J, Ge W, Li J. 2005 Simulation of heterogeneous structures and analysis of energy consumption in particle-fluid systems with pseudo-particle modeling. Chem. Eng. Sci. 60, 3091–3099. (doi:10.1016/j.ces.2004.11.057)
[12] Li J, Ge W, Zhang J. 2005 Research collaboration group on multi-scale methodology and complex systems. China Particuol. 3, 290–295. (doi:10.1016/S1672-2515(07)60205-X)
[13] Li J, Huang W, Edwards PP, Kwauk M, Houghton JT, Slocombe DR. 2013 On the universality of mesoscience: science of 'the in-between'. arXiv. (doi:10.48550/arXiv.1302. 5861)
[14] Huang W, Li J, Edwards PP. 2018 Mesoscience: exploring the common principle at mesoscales. Natl Sci. Rev. 5, 321–326. (doi:10.1093/nsr/nwx083)
[15] Li J, Ge W, Kwauk M. 2009 Meso-scale phenomena from compromise — a common challenge, not only for chemical engineering. arXiv. (doi:10.48550/arXiv.0912.5407)
[16] Li J, Wen L, Ge W, Cui H, Ren J. 1998 Dissipative structure in concurrent-up gas–solid flow. Chem. Eng. Sci. 53, 3367–3379. (doi:10.1016/S0009-2509(98)00130-4)
[17] Chen J, Ren Y, Huang WL, Zhang L, Li J. 2022 Multilevel mesoscale complexities in mesoregimes: challenges in chemical and biochemical engineering. Annu. Rev. Chem. Biomol. Eng. 13, 431–455. (doi:10.1146/annurev-chembioeng-092220-115031)
[18] Batterham R. 2016 Compromise through competition: a more widely applicable approach? Engineering 2, 286–287. (doi:10.1016/J.ENG.2016.03.009)
[19] Ocone R. 2017 Reconciling “micro”and “macro”through meso-science. Engineering 3, 281–282. (doi:10.1016/J.ENG.2017.03.009)
[20] Paci AM. 2018 A research and innovation policy for sustainable S&T: a comment on the essay “the logic and landscape of the knowledge system”. Engineering 4, 306–308. (doi:10.1016/j.eng.2018.05.003)
[21] Li J, Huang W, Chen J, Ge W, Hou C. 2018 Mesoscience based on the EMMS principle of compromise in competition. Chem. Eng. J. 333, 327–335. (doi:10.1016/j.cej.2017.09.162)
[22] Wilheim RH, Kwauk M. 1948 Fluidization of solid particles. Chem. Eng. Prog. 44, 201–218.
[23] Toomey RD, Johnstone HF. 1952 Gaseous fluidization of solid particles. Chem. Eng. Prog. 48, 220–226.
[24] Davidson JF. 1961 Symposium on fluidization-discussion. Trans. Inst. Chem. Eng. 39, 230-232.
[25] Reh L. 1971 Fluidized bed processing. Chem. Eng. Prog. 67, 58–63.
[26] Zhang L, Chen J, Huang W, Li J. 2018 A direct solution to multi-objective optimization: validation in solving the EMMS model for gas-solid fluidization. Chem. Eng. Sci. 192, 499-506. (doi:10.1016/j.ces.2018.07.033)
[27] Zhang L, Huang WL, Chen J. 2023 An improved EMMS model for turbulent flow in pipe and its solution. Particuology 76, 1–12. (doi:10.1016/j.partic.2022.07.013)
[28] Ge W et al. 2007 Analytical multi-scale method for multi-phase complex systems in process engineering—bridging reductionism and holism. Chem. Eng. Sci. 62, 3346–3377. (doi:10.1016/j.ces.2007.02.049)
[29] The NSFC launched the major research program of “mesoscience” — mechanism and manipulation at mesoscales in multiphase reaction processes. National Natural Science Foundation of China. See https://www.nsfc.gov.cn/publish/portal0/tab440/info56809.htm (accessed 15 August 2012).
[30] Ren Y, Gao J, Xu J, Ge W, Li J. 2012 Key factors in chaperonin-assisted protein folding. Particuology 10, 105–116. (doi:10.1016/j.partic.2011.02.011)
[31] Wang H, Han Y, Li J. 2013 Dominant role of compromise between diffusion and reaction in the formation of snow-shaped vaterite. Cryst. Growth Des. 13, 1820–1825. (doi:10.1021/cg301241s)
[32] Huang WL, Li J. 2016 Compromise between minimization and maximization of entropy production in reversible Gray–Scott model. Chem. Eng. Sci. 155, 233–238. (doi:10.1016/j.ces.2016.08.022)
[33] Li J, Huang W, Ge W. 2018 Multilevel and multiscale PSE: challenges and opportunities at mesoscales. In 13th international symposium on process systems engineering (PSE 2018) (eds MR Eden, MG Ierapetritou, GP Towler), pp. 11–19. San Diego, CA: Computer Aided Chemical Engineering. (doi:10.1016/B978-0-444-64241-7.50002-1)
[34] Li J, Zhang Z, Ge W, Sun Q, Yuan J. 1999 A simple variational criterion for turbulent flow in pipe. Chem. Eng. Sci. 54, 1151–1154. (doi:10.1016/S0009-2509(98)00409-6)
[35] Wang L, Qiu X, Zhang L, Li J. 2016 Turbulence originating from the compromise-incompetition between viscosity and inertia. Chem. Eng. J. 300, 83–97. (doi:10.1016/j.cej.2016.04.115)
[36] Huang WL, Li J. 2016 Mesoscale model for heterogeneous catalysis based on the principle of compromise in competition. Chem. Eng. Sci. 147, 83–90. (doi:10.1016/j.ces.2016.03.019)
[37] Yang N, Wang W, Ge W, Li J. 2003 CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chem. Eng. J. 96, 71–80. (doi:10.1016/j.cej.2003.08.006)
[38] Wang W, Li J. 2007 Simulation of gas-solid two-phase flow by a multi-scale CFD approach — extension of the EMMS model to the sub-grid level. Chem. Eng. Sci. 62, 208–231. (doi:10.1016/j.ces.2006.08.017)
[39] Lu B, Wang W, Li J. 2009 Searching for a mesh-independent sub-grid model for CFD simulation of gas–solid riser flows. Chem. Eng. Sci. 64, 3437–3447. (doi:10.1016/j.ces.2009.04.024)
[40] Ge W et al. 2011 Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS paradigm. Chem. Eng. Sci. 66, 4426–4458. (doi:10.1016/j.ces.2011.05.029)
[41] Liu X, Guo L, Xia Z, Lu B, Zhao M, Meng F, Li Z, Li J. 2012 Harnessing the power of virtual reality. Chem. Eng. Prog. 108, 28–33.
[42] Fu B, Wang S, Zhang J, Hou Z, Li J. 2019 Unravelling the complexity in achieving the 17 sustainable-development goals. Natl Sci. Rev. 6, 386–388. (doi:10.1093/nsr/nwz038)
[43] Huang WL, Li J. 2021 Optimizing the roadmap to carbon neutrality with a new paradigm. Engineering 7, 1678–1679. (doi:10.1016/j.eng.2021.09.005)
[44] Huang Y. 2018 Consensus reached at the mesoscience conference. Natl Sci. Rev. 5, 455–455. (doi:10.1093/nsr/nwy071)
[45] Song J. 2018 Mesoscience: peering into a once neglected world. Bull. Chin. Acad. Sci. 32, 79–86. (doi:CNKI:SUN:KYYW.0.2018-02-007)
[46] Li J. 2020 To maximise its potential, science needs more than investment. Times Higher Education, See https://www.timeshighereducation.com/opinion/maximise-its-potential-science-needs-more-investment (accessed 24 June 2020)
[47] Yang N, Chen J, Zhao H, Ge W, Li J. 2007 Explorations on the multi-scale flow structure and stability condition in bubble columns. Chem. Eng. Sci. 62, 6978–6991. (doi:10.1016/j.ces.2007.08.034)
[48] Chen J, Yang N, Ge W, Li J. 2009 Modeling of regime transition in bubble columns with stability condition. Ind. Eng. Chem. Res. 48, 290–301. (doi:10.1021/ie8003623)
[49] Hong K, Wang W, Zhou Q, Wang J, Li J. 2012 An EMMS-based multi-fluid model (EFM) for heterogeneous gas–solid riser flows: part I. Formulation of structure-dependent conservation equations. Chem. Eng. Sci. 75, 376–389. (doi:10.1016/j.ces.2012.03.022)
[50] Wang J, Zhou Q, Hong K, Wang W, Li J. 2012 An EMMS-based multi-fluid model (EFM) for heterogeneous gas–solid riser flows: part II. An alternative formulation from dominant mechanisms. Chem. Eng. Sci. 75, 349–358. (doi:10.1016/j.ces.2012.03.021)
[51] Guo S, Wang L. 2021 A dual-eddy EMMS-based turbulence model for laminar–turbulen transition prediction. Particuology 58, 285–298. (doi:10.1016/j.partic.2021.04.005)
[52] Zhang H, Wang L. 2024 Dynamic energy-minimization multi-scale heterogeneous continuum evolution model for gas-solid fluidization. Chem. Eng. J. 480, 148343. (doi:10.1016/j.cej.2023.148343)
[53] Guo L, Wu J, Li J. 2019 Complexity at mesoscales: a common challenge in developing artificial intelligence. Engineering 5, 924–929. (doi:10.1016/j.eng.2019.08.005)
[54] Li J. 2020 Insight: the journey ahead for AI. Business chief. See https://www.businesschief.asia/technology/insight-the-journey-ahead-for-ai (accessed 20 May 2020)
[55] Guo L, Meng F, Qin P, Xia Z, Chang Q, Chen J, Li J. 2024 A case study applying mesoscience to deep learning. Engineering 39, 84–93. (doi:10.1016/j.eng.2024.01.007)
[56] Chen LH. 2023 The future of carbon neutrality from a scientific research perspective: an interview with Jing-Hai Li. Natl Sci. Rev. 10, nwad007. (doi:10.1093/nsr/nwad007)
[57] The sustainable development goals report 2023: Special edition——Towards a Rescue Plan for People and Planet. United Nations. See https://sdgs.un.org/sites/default/files/2023-07/The-Sustainable-Development-Goals-Report-2023_0.pdf.
[58] Dong C, Li J, Reddy D. 2022 Science for this age: paradigm shifts and global challenges. Engineering 19, 22–23. (doi:10.1016/j.eng.2022.05.002)
[59] Li J, Huang W, Chen J. 2021 Possible roadmap to advancing the knowledge system and tackling challenges from complexity. Chem. Eng. Sci. 237, 116548. (doi:10.1016/j.ces.2021.116548)
[60] Wang H, Yan H, Rong C, Yuan Y, Jiang F, Han Z, Sui H, Jin D, Li Y. 2024 Multi-scale simulation of complex systems: a perspective of integrating knowledge and data. ACM Comput. Surv. 56, 1–38. (doi:10.1145/3654662)
[61] Tordesillas A, Kahagalage S, Ras C, Nitka M, Tejchman J. 2020 Early prediction of macrocrack location in concrete, rocks and other granular composite materials. Sci. Rep. 10, 20268. (doi:10.1038/s41598-020-76616-y)
[62] Tordesillas A, Kahagalage S, Campbell L, Bellett P, Intrieri E, Batterham R. 2021 Spatiotemporal slope stability analytics for failure estimation (SSSAFE): linking radar data to the fundamental dynamics of granular failure. Sci. Rep. 11, 9729. (doi:10.1038/s41598-021-88836-x)
[63] Peng L, Wei Z. 2020 Recent progress of mesoscience in design of electrocatalytic materials for hydrogen energy conversion. Particuology 48, 19–33. (doi:10.1016/j.partic.2018.08.013)
[64] Wu N, Ji X, Li L, Zhu J, Lu X. 2021 Mesoscience in supported nano-metal catalysts based on molecular thermodynamic modeling: a mini review and perspective. Chem. Eng. Sci. 229, 116164. (doi:10.1016/j.ces.2020.116164)
[65] Qian H, Beltran AS. 2022 Mesoscience in cell biology and cancer research. Cancer Innov. 1, 271–284. (doi:10.1002/cai2.33)
[66] Wei Y, Zhao D, Wang D. 2024 Mesoscience in hollow multi‐shelled structures. Adv. Sci. 11, e2305408. (doi:10.1002/advs.202305408)
[67] Li J, Zhang J, Ge W, Liu X. 2004 Multi-scale methodology for complex systems. Chem. Eng. Sci. 59, 1687–1700. (doi:10.1016/j.ces.2004.01.025)
[68] Li J, Hu Y, Yuan Q. 2014 Mesoscience: exploring old problems from a new angle. SCIENTIA SINICA Chimica. 44, 277–281. (doi:10.1360/N032014-00052)