首页/文章/ 详情

正弦分析之详细版(简化及修正)

1月前浏览579

这是 ANSYS 工程实战 第 42 篇文章


问题描述:正弦分析选用的项目模块为谐响应分析(Harmonic Response),这里对正弦分析具体分析步骤和方法进行了详细介绍。


1.  用完全法进行正弦分析的分析步骤及设置


1.1    插入响应模块



图 1  插入响应模块


1.2    三维模型导入及处理


在 Inventor 软件中对行波管进行建模,经过模型干涉检查合格后,将建立好的模型生成 stp 格式,导入到有限元软件 ANSYS Workbench 中,行波管模型如图 2 所示,包括底板、包装件、电子枪、收集极和高频等组件。


图 2  几何模型


1.3  有限元网格


所有体进行 part 设置,设置材料属性,抑制 Connections 选项下的所有 contact,按照图 3 设置网格大小。


图 3  网格大小设置


设置完毕后,右键点击 Mesh 对所有体同时进行网格划分,划分后的有限元模型如图 4。


图 4  有限元模型

也可以在几何体(Geometry)中选中要划分的体,在几何体点右键对部分体先进行划分,然后依次划分体。


1.4    边界条件及施加载荷


正弦试验条件如图 4 所示,在设计阶段,可以直接使用鉴定条件进行分析。


图 5  正弦分析条件


谐响应分析中,简谐载荷需要指定幅值相位角和频率,载荷在第一个求解间隔即被施加。

相位角是指两个或多个谐响应载荷之间的相位变换,若只存在一个载荷则不需要设置,并不是所有载荷都支持相位输入。如果施加载荷为加速度载荷,其相位角为 0,如果载荷为力或位移,设置相位角。


频率及算法具体设置如图 5 ,在频率 20-100Hz 的频率范围,求解间隔为10,将会得到 28﹑36﹑44﹑52﹑60﹑68﹑76﹑84﹑92 和 100 的结果。


图 6  正弦分析频率及算法设置

施加正弦载荷的具体设置如图 7,大小为 156800mm/s^2 (16 g ), 方向点击 Click to chang 选择底板上的线确定方向,如 X 方向。

图 7  正弦载荷设置

加速度和位移振幅换算方法:10-20 Hz 时载荷为幅值,20-100 Hz 时载荷为加度,可以按照下面公式进行换算。
位移y=Asin(ωt+C)
速度v=y’=w A cos(ωt+C)
加速度a=v’=y’’=-ω^2Asin(ωt+C)

   ω=2πf 

10-20Hz 振幅 A 为 10mm,则 加速度 a (max)=v’=y’’=-ω^2Asin(ωt+C)= -ω^2A=
20-100Hz的加载加速度为 16g 时,将其转换为 mm/s^2 单位时为 156800  mm/s^2,其中 g 取 9.8m/s^2。

 

说明:加速度方向要在几何模型中选定,具体方向与坐标系方向一致。如果出现导入的图的底板与坐标系不一致,或显示时图像出现倾斜,就要在三维软件中先导入底板,再进行组装,确保导入仿真软件后坐标系入底板坐标系一致。

边界固定:正弦分析需要单独进行固定方式约束,即约束底板安装孔为全约束。需要单独加载固定约束。

图 8 边界固定


1.5   仿真结果


谐响应分析查看结果主要分三步第一步先要绘制关键点的位移与频率曲线。根据经验我们知道本结构在三通处一般较薄弱,选择薄弱处的多个面,如图 9。

图 9 薄弱部位面选择

第二步,找出最大值对应的关键频率和相位角,在属性 Spatial Resolution 中选择 Use Maximum,在频率 100 Hz 或 94 Hz 时应力最大,如图 10 。

图 10 关键频率及相位角

三步,查看整个结构在对应频率下的应力,如图 11。

图 11 关键频率点应力

说明:这里最大应力与图 10 查看的最大 Mises 应力有一定差,一个原因是最大应力发生在两体交界面,两体交界面无法识别应力-频率曲线或位移-频率曲线

用同样的方法在 Y 和 Z 方向施加正弦载荷进行计算,得到关键频率点下整个结构的应力

根据《航天器电子产品可靠性设计》中航天电子设备结构设计基础中关于结构强度设计的内容安全裕度计算如下:

其中,为需用应力,脆性材料取强度极限;其它材料取弹性极限。通常,准静态载荷的安全系数一般取f≥1.5;振动载荷的安全系数一般取f=1.2-1.35。

从 X、Y、Z 方向进行正弦分析得到的应力结果中可以看出,行波管最大1σ应力为 8.69 Mpa, 其 3σ 应力为 26.07 MPa,发生在三通处,其材料为蒙乃尔,查得的弹性极限为为 161.7 MPa,结构强度安全裕度为:

M.S=161.7/(26.7×1.35)-1=3.48>0

满足结构强度安全裕度设计要求。


特别说明:


谢谢朋友们提出的宝贵意见,已经对文章进行缩减和更正了。


来源:ANSYS及ANSYS Workbench工程实战
ACTWorkbench振动航天电子UM材料Inventor试验ANSYS
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-02-19
最近编辑:1月前
gao1984001
硕士 签名征集中
获赞 33粉丝 100文章 96课程 0
点赞
收藏
作者推荐

实际企业内,专业的模态分析是什么样?

01 模态分析 模态分析是最重要的动力学分析类型。在线性结构的假设下,实际结构振动可以分解为模态振动的线性叠加;即对于线性系统可利用模态叠加得到系统振动的通解。 目前来说,主流仿真软件ANSYS、ABAQUS、Nastran、OptiStruct等的模态分析都属于线性分析。 需要注意,实模态分析和复模态分析都属于线性分析,其中复模态分析还包括稳定模态和非稳定模态。 需要澄清,目前网上很多仿真视频或图文的标题为非线性模态分析,其实都是非线性静力学分析+模态分析,实质属于预应力模态分析,模态分析还是线性分析。这种分析,更贴切的名称为线性摄动模态分析。02 非线性模态分析 其实非线性模态分析也是有的,只是目前理论还在发展,工业应用还不成熟。以下描述来自曹树谦老师的书。03 模态实验 模态分析光有仿真,没有实验是不够的。实际企业内,真正专业的模态分析,一定是模态仿真和模态实验相结合,用模态实验数据去校核和提升模态仿真方法。04 动态信号测试系统 动态信号测试系统的基本组成和原理。涉及模拟信号与数字信号,采样率与量化,混叠与泄露,加速度传感器原理与使用方法,DSP数字处理系统等试验知识。05 模态实验流程 通过输入与输出信号,获得传递函数FRF,开启实验模态分析。06 模态实验场景 实验模态分析的实际场景。来源:ANSYS及ANSYS Workbench工程实战

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈