首页/文章/ 详情

Ansys Workbench多物理场耦合仿真

2小时前浏览129
工程实际中,结构场、温度场、流体场、电磁场相互耦合。随着产品的要求越来越高,单场载荷响应已不能满足设计要求,多场耦合仿真技术的重要性愈发凸显,更好模拟实际问题提高工程设计的准确性和可靠性。
航空发动机流-热-固耦合仿真

按照耦合程度,多场耦合可分为单向耦合和双向耦合。单向耦合即A场对B场有影响,而B场对A场没影响。双向耦合即A场对B场有影响,而B场对A场也有影响。按照计算方法,多场耦合主要有直接耦合法和迭代耦合法。

   

多物理场耦合作用

随着当今世界科技发展,多场耦合分析已在许多领域都有广泛的应用,如航空航天、土木工程、机械工程、电子工程、光学工程等。多场耦合分析可以帮助我们更好地理解和预测复杂系统的性能,其主要分析步骤如下:    

Step 1:建立数学模型

根据所研究的问题,将各个物理场用数学方程表示出来,如 Navier-Stokes 方程、波动方程、热传导方程等。

Step 2:确定边界条件

根据实际问题的几何形状和物理特性,设定数学模型的边界条件和初始条件。

Step 3:求解数学模型

利用数值计算方法(如有限元法、有限差分法等)求解各个物理场的数学模型,得到各个场的分布和变化情况。

Step 4:分析结果数据

对计算结果进行分析,找出各个物理场之间的相互作用规律,评估设计方案的优劣,为工程决策提供依据。

Step 5:优化设计模型

根据分析结果,对设计方案进行优化,以满足工程要求

   
流-固耦合燃烧模拟    
Ansys Workbench是功能最全面、性能最卓越的工程仿真软件之一,具备解决复杂多物理场的耦合计算能力,通过图形化界面进行多种物理场耦合的仿真分析,如流-热-固耦合、电-磁-热耦合、光-机-热耦合等。    

热-固耦合仿真    

由热力学定理可知,热胀冷缩是物体的固有属性。当环境温度发生改变时,结构的连续性或边界条件由于热胀冷缩而产生热应力,在正常工况下存在稳态热应力,在启动或关闭过程中存在瞬态热应力。
                               

由约束限制产生热应力               由材料差异产生热应力

一般情况下,热-固耦合为单向耦合。结构力学响应不会影响热物性、传热方式以及热边界条件,结构热应力问题可以解耦为热分析和结构分析,将热分析的温度分布作为结构分析的输入条件。
结构热应力分析流程
Ansys Workbench热-固耦合仿真分析流程,如下图所示。首先,进行结构热分析,获取温度场分布。然后,将温度作为外载荷,导入到结构力学计算中,从而得到结构热应力热变形。

Ansys Workbench热-固耦合仿真分析流程

流-固耦合仿真    

流-固耦合是流体力学 (CFD) 与固体力学 (CSM) 的交叉力学分支,用于研究流体流场与固体变形之间的相互作用,计算固体在流体流动作用下的应力应变,以及流体在固体变形影响下的流场改变。

CAE告诉你“脑子进水”是什么感觉

单向流-固耦合:数据只从流体计算传递压力到固体表面,或者数据只从固体计算发送节点位移到流体界面。固体计算既可采用静态结构分析,也可采用瞬态结构分析。Workbench单向流-固耦合分析流程,如下图所示。

Ansys Workbench单向流-固耦合仿真分析流程

双向流-固耦合:每一时刻都同时进行流体计算传递压力到固体表面,固体计算发送节点位移到流体界面。固体计算通常采用瞬态结构分析。Workbench双向流-固耦合分析流程,如下图所示。  

Ansys Workbench双向流-固耦合仿真分析流程

流-热耦合仿真    

流-热耦合是研究温度场与流体场之间的相互作用,在工程实际中非常普遍,例如预测氧化、冷隔、浇不足等铸造缺陷。流-热耦合需要进行多次迭代计算,需要考虑多种因素,如流体的物理性质、温度场的影响等。

Ansys Workbench可以完成单向和双向流-热耦合仿真,用户可以利用ICEMCFD划分流体场网格,使用Fluent模块求解流体场,从而完成流-热耦合计算。流-热耦合计算中,主要基于对流换热计算公式进行数据交换。

Ansys Workbench双向流-热耦合仿真分析流程

流-热-固耦合仿真    

流-热-固耦合是研究流体场、温度场、结构场之间的相互耦合作用,例如航空领域的尾喷管气动加热问题、航空发动机一体隔热结构的散热问题,航天领域飞行器的热气弹问题,汽车领域的排气管流-热-固耦合问题等。

三通管流-热-固耦合仿真

Ansys Workbench使用Fluent、Steady-State Thermal、Static Structural实现流-热-固耦合分析,流体通过耦合面传递流体力至结构并传递温度至热场,热场通过体耦合传递温度至结构,数据流如下图所示。

Ansys Workbench双向流-热-固耦合仿真分析流程

电-磁-热-固耦合仿真    

电-磁-热-固耦合仿真是研究电场、磁场、温度场、结构场相互耦合作用,可以在产品设计阶段就能减少产品问题,使产品更加小型化、更安全可靠高效,大幅降低变压器、电机、电磁炉等机电原型机的测试和生产成本。

5G数字电路电-磁耦合仿真

Ansys Maxwell是工业界领先的电磁仿真软件,已被集成到先进的仿真平台Workbench中,可以实现电机电磁、振动和噪声的耦合分析。也可以与其他软件进行耦合分析,如Maxwell模块与FLUENT软件之间的电磁热流耦合分析。

Ansys Workbench电-磁-热耦合仿真分析流程

刚-柔耦合仿真    

在实际工程问题中,刚形体与柔性体同时存在,其中柔性体很容易发生疲劳破坏,其变形也会影响机械系统精度,因此需要考虑结构的变形效果,分析柔性体的结构力学响应,即进行刚-柔耦合仿真分析。

Ansys Workbench刚-柔耦合分析项目流程如下图所示,主要分为两步:首先进行刚体动力学分析,然后进行柔性体力学分析。

Ansys Workbench刚-柔耦合仿真分析流程

光-机-热耦合仿真    

在精密光学仪器中,由于机械载荷、温度变化、装配偏差等因素,会引起光学镜面几何变形和光学材料性能变化,难以满足镜片面形和位置精度要求。因此,需要将光学、结构力学、热力学等多学科集成耦合,形成光-机-热集成分析方法,通过仿真驱动设计实现光机方案快速迭代。

太空望远镜光-机-热耦合仿真

Ansys Mechanical结构分析对镜头的装配和温度工况进行模拟分析,得到镜头变形数据结果,再通过Zemax的STAR模型进行耦合,将镜头的结构分析数据导入到镜头设计软件中,从而进行镜头设计和优化。

Ansys Workbench光-机-热耦合仿真分析流程
多场耦合分析是研究多种物理场相互作用的分析方法,涉及固体力学、流体力学、热力学、电磁学、热学等多学科知识。作为新时代工程师,学好自身专业的同时,也要不断拓展其它专业知识,更好实现产品交叉融合。


来源:纵横CAE
MechanicalFluentMaxwellWorkbench振动疲劳燃烧电路光学航空航天汽车电子其他软件铸造电机材料
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-01-23
最近编辑:2小时前
纵横CAE
硕士 签名征集中
获赞 23粉丝 64文章 185课程 0
点赞
收藏
作者推荐

一文搞懂Ansys Workbench瞬态动力学分析

瞬态动力学分析(Transient Structural)用于确定承受任意随时间变化载荷的结构动力学响应,可以确定结构在稳态载荷、瞬态载荷和简谐载荷作用下位移、应变、应力及力随时间变化。Ansys Workbench 瞬态动力学分析流程,如下图所示。Fig. 1 Ansys Workbench瞬态动力学分析流程图行星轮系广泛应用于汽车、船舶、航空航天等领域。齿面啮合产生的应力、冲击往往造成齿轮失效,如轮齿折断、齿面磨损等,因而有必要对行星轮系进行强度校核。本文以行星轮系仿真为例,详细讲解Ansys Workbench瞬态动力学分析流程。Fig. 2 行星齿轮传动1 几何建模与导入在Solidworks环境中,构建行星轮系CAD模型,保存为x_t格式。打开 Workbench,拖入Geometry,设置Units为mm。右击Geometry,选择并进入DM界面,通过Import External Geometry File导入模型,右击Attacxh1,选择Generate生成模型。Fig. 3 几何建模与导入2材料与单元属性关闭DM界面,拖拉Transient Structural至Geometry上。双击Engineering Data,材料选用结构钢。双击Model,进入Mechanical界面,展开Geometry修改刚度属性Stiffness Behavior,将内齿圈、行星架设置为Rigid,将太阳轮、行星轮设置为Flexible。 Fig. 4 材料属性设置 3有限元网格划分右击模型树Mesh,插入1个Method,划分方法设置为多区MultiZone,图形区选中太阳轮和行星轮,点击下方列表中的Apply,设置Element Size为5mm。右击Mesh,选择Generate Mesh,生成网格模型,检查网格质量Quality,如下图所示。Fig. 5 行星轮系有限元网格划分4连接关系的构建1) 设置齿面接触。太阳轮与行星轮、行星轮与内齿轮均设置为无摩擦接触。接触面选择所有的主动轮啮合面,目标面选择所有的从动轮啮合面。其中,选择方法请参考:操作技巧 | Ansys Workbench快速选中点边面体。Fig. 6 齿面接触设置特别注意:为便于收敛,设置接触刚度系数为0.1。此外,由于模型初始间隙较大,故将Interface Treatment设置为 Adjust to Touch。 2) 创建运动副。在模型树Connections下,插入两个转动副(Revolute-Body to Ground),一个转动副(Revolute-Body to Body)、一个固定副(Fixed-Ground to Body),然后选取相关表面,完成运动关系创建。Fig. 7 创建转动副5 载荷及驱动设置模型树右击Transient,插入两个关节载荷Joint Load,设置太阳轮角速度为0.2 rad/s,设置行星架反向转矩为100N·mm。此处注意单位。Fig. 8 设置关节角速度6 求解设置与计算点击Analysis Settings,设置求解时间为0.1s,设置初始子步为10,最小子步为10,最大子步为1000,开启大变形开关。如果不收敛,可以通过调试网格质量,调试接触算法,或者增加一个较短的时间步过渡加载。 Fig. 9 分析求解设置 7求解结果后处理求解完成后,进入结果后处理,单击Equivalent Stress可以获得整个分析过程中的应力云图及曲线。也可以通过添加接触工具,查看接触压力云图等。Fig. 10 应力云图Ansys Workbench行星轮系瞬态动力学计算量较大,可以仿真转动两三个齿即可,为提高计算的准确性,可以将这两三个齿进行网格局部加密,以便更加接近真实解。来源:纵横CAE

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈