首页/文章/ 详情

什么是晶粒度?如何处理混晶~

3小时前浏览149

晶粒度是表示金属材料晶粒度大小的程度。一般情况下,晶粒细化可以提高金属材料的屈服点、疲劳强度、塑性和冲击韧度,降低脆性转变温度。 

影响晶粒大小的主要因素

①加热温度。加热温度越高,保温时间越长,晶粒长大的倾向越大。

②机械阻碍物。一般来说,金属的晶粒随着温度的升高不断长大,几乎成正比关系。但是,也不完全如此,有时候加热到较高温度时,晶粒仍很细小,可以说没有长大,而当温度再升高一些时,晶粒突然长大。并且有些材料,随加热温度升高,晶粒分阶段突然长大。一般称前一种长大方式为正常长大,后一种为异常长大。金属异常长大的原因是金属材料中存在机械阻碍物,对晶界有钉札作用,阻止晶界的迁移。 

③变形程度和变形速度。变形程度对晶粒大小的影响的规律总的来说,随着变形程度由小到大,晶粒尺寸由大变小,但是晶粒大小有两个峰值,即出现两个晶粒区,第一个大晶粒区叫做临界变形区。不同材料和不同变形温度的临界变形程度的大小不一样,临界变形区是一个小变形量范围,在某些情况下,当变形量足够大时,可能出现第二个大晶粒区。

固溶处理前的组织情况。固溶处理后的晶粒大小除了受固溶温度和机械阻碍物的影响外受固溶加热前的组织情况影响很大。如果锻后是未再结晶组织而且处于临界变形程度时固溶处理后将形成粗大晶粒如果锻后是完全再结晶组织固溶处理后一般可以获得细小而均匀的晶粒如果锻后是不完全再结晶组织即半热变形混合组织,固溶加热时,由于各处形核的时间先后、数量多少和长 大条件等不一样,固溶处理后晶粒大小将是不均匀的。

⑤原始晶粒度。按传统观念,钢在加热至正火温度时即发生相变和重结晶,使粗大晶粒得到细化。但是有些钢种(主要是马氏体钢和贝氏体钢)过热后形成的粗晶,经正火后仍为粗大晶粒。这种部分或全部由原粗大奥氏体晶粒复原的现象称为晶粒遗传。

案例:消除混晶及晶粒粗大的工艺方案

晶粒度对产品的屈服点、疲劳强度、塑性、冲击韧度及脆性转变温度影响很大,混晶及晶粒粗大一直是困扰锻件生产的主要问题之一。

①主要攻关内容。在实验室对试棒进行试验,得出消除混晶及晶粒粗大的工艺方案;将实验结果应用到产品并进行工艺优化,最终制订出切实可行的消除混晶及晶粒粗大的控制方案。

②目标。找出锻件混晶及晶粒粗大的根源,使其出现的概率大大降低。得出消除混晶及晶粒粗大的工艺方案;将实验结果应用到产品并进行工艺优化,最终制订出切实可行的消除混晶及晶粒粗大的控制方案。

试验内容:

根据产品状况,本次研究以45和17 CrNiMo6结构钢为主要研究对象,45钢代表合金化程度不高的结构钢。17CrNiMo6代表合金化程度相对较高的钢,来寻找如何解决产品产生混晶及晶粒粗大的问题。终锻温度过高、变性不均匀及变形量选择不当等都可能造成45钢及17 CrNiMo6钢产生混晶及晶粒粗大的问题。

为了寻找到解决45钢和17 CrNiMo6混晶及晶粒粗大的问题,特别制作了材质为45和17 CrNiMo6规格为Φ300× 800的轴各一根,在进行热处理前各取一个试样进行成分和组织检测,成分检验结果见表1



做完检测的45和17 CrNiMo6轴一分为二,分别做正火和退火

45钢正火工艺见图1;



17 CrNiMo6正火工艺见图2;



45钢退火工艺见图3;



17 CrNiMo6退火工艺见图4;


正火、 退火后检测结果见表2;

分析实验结果,不难发现,45钢正火和退火均可以消除混晶及晶粒粗大问题,但对比退火来说,45钢正火后组织更佳;17 CrNiMo6正火后仍存在混晶及晶粒偏大问题,退火后消除了混晶及晶粒粗大问题,并且17 CrNiMo6退后后组织为铁素体+珠光体,而正火后组织为粒状贝氏体+少量铁素体。45钢采用正火,而17CrNiMo6采用退火进行消除混晶及晶粒粗大问题,可以由钢的加热及冷却理论予以解释:

①对于发生相变重结晶的正火和退火,在加热到AC3以上稍高温度,由于奥氏体重新形核,保温适当的时间后,空冷或者炉冷,都会对锻后混晶及晶粒粗大组织有一定的改善。

②对比45钢正火与退火后的组织,虽然混晶与晶粒粗大都能得到消除,但正火相对于退火来说,晶粒更细,这是由于退火是在炉内缓慢冷却,在较高的温度缓慢冷却的过程中,晶粒仍有长大的趋势,这种长大趋势随着锻件截面的增大而增加,因为截面越大的锻件在炉内降温越慢,所以对于较大尺寸的45钢锻件不宜采用退火来消除混晶及晶粒粗大,易采用较快的加热速度与较快的冷却速度的正火来消除

③17 CrNiMo6正火后晶粒粗大虽有所改善,但混晶问题依然存在,分析其正火前后的组织不难发现,17CrNiMo6正火后混晶及晶粒偏大是由于晶粒遗传所致。晶粒遗传多发生在马氏体及贝氏体钢中,对于组织中存在马氏体或贝氏体组织的,也会产生组织遗传现象。要想避免组织遗传所导致的混晶及晶粒粗大问题,就必须打破热处理过程中的组织遗传现象,相对于正火来说,17CrNiMo6退火后更容易得到铁素体+珠光体的平衡组织,这样就打破了由于贝氏体组织存在所造成的组织遗传,这样就能从根本上解决17 CrNiMo6混晶及晶粒粗大的问题。

 结论:

综上所述,解决混晶及晶粒粗大问题时,不能一概而论,应该根据材料的化学成分及其组织而有所取舍,对于 金含量相对较少的45钢,解决混晶及晶粒粗大优先选择正火,这样既能达到目的,也能节约能源,缩短生产周期;对于合金含量相对较高的17 CrNiMo6,由于其锻后冷却过程中易产生不平衡的贝氏体组织,导致组织遗传,所以采用退火消除组织遗传,才能达到消除混晶及晶粒粗大的问题。

信息来源:每天学点热处理

声明:本文所用图片、文字部分源于网络,目的为非商业性知识分享,版权仍属于原作者,如信息有误或涉及版权问题,请第一时间通知,我们将立即处理!


来源:材子笔记
疲劳化学电子理论材料控制试验
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-01-23
最近编辑:3小时前
材子笔记
硕士 | 研发工程师 爱材料,懂生活~
获赞 219粉丝 159文章 344课程 0
点赞
收藏
作者推荐

什么是焊接热影响区?性能如何?

焊接热影响区(HAZ)与焊缝不同,焊缝可以通过化学成分的调整、再分配及适当的焊接工艺来保证性能的要求,而热影响区性能不可能通过化学成分来调整,它是在热循环作用下才产生的组织分布不均匀性问题。对于一般焊接结构来讲,主要考虑热影响区的硬化、脆化、韧化、软化,以及综合的力学性能、抗腐蚀性能和疲劳性能等,这要根据焊接结构的具体使用要求来决定。 01 焊接热影响区的硬化 焊接热影响区的硬度主要决定于被焊钢种的化学成分和冷却条件,其实质是反应不同金相组织的性能。由于硬度试验比较方便,因此,常用热影响区(一般在熔合区)的最高硬度Hmax判断热影响区的性能,它可以间接预测热影响区的韧性、脆性和抗裂性等。近年来,HAZ的Hmax作为评定焊接性的重要标志。应当指出,即使同一组织,也有不同的硬度。这与钢的含碳量、合金成分及冷却条件有关。02 焊接热影响区的脆化 焊接热影响区的脆化常常是引起焊接接头开裂和脆性破坏的主要原因。目前其脆化的形式有粗晶脆化、析出脆化、组织转变脆化、热应变时效脆化、氢脆以及石墨脆化等。① 粗晶脆化。在热循环的作用下,焊接接头的熔合线附近和过热区将发生晶粒粗化。晶粒粗大严重影响组织的脆性。一般来讲,晶粒越粗,则脆性转变温度越高。② 析出脆化。在时效或回火过程中,其过饱和固溶体中将析出碳化物、氮化物、金属间化合物及其他亚稳定的中间相等。由于这些新相的析出,使金属或合金的强度、硬度和脆性提高,这种现象称为析出脆化。③ 组织脆化。焊接HAZ中由于出现脆硬组织而产生的脆化称为组织脆化。对于常用的低碳低合金高强钢,焊接HAZ的组织脆化主要是M-A组元、上贝氏体、粗大的魏氏组织等造成的。但对含碳量较高的钢(一般≥0.2%),则组织脆化主要是由高碳马氏体引起的。④ HAZ的热应变时效脆化。在制造过程中要对焊接结构进行加工,如下料、剪切、冷变成型、气割、焊接和其他热加工等。由这些加工引起的局部应变、塑性变形对焊接HAZ脆化有很大的影响,由此而引起的脆化称为热应变时效脆化。应变时效脆化大体上可分为静应变时效脆化和动应变时效脆化两类。通常说的“蓝脆性”就属于动应变时效现象。03 焊接HAZ的韧化 焊接HAZ在组织和性能上是一个非均匀体,特别是熔合区和粗晶区易产生脆化,是整个焊接接头的薄弱地带。因此,应采取措施提高焊接HAZ的韧性。根据研究,HAZ的韧化可采用以下两方面的措施。① 控制组织。对低合金钢,应控制含碳量,使合金元素的体系为低碳微量多种合金元素的强化体系。这样,在焊接的冷却条件下,使HAZ分布有弥散强化质点,在组织上能获得低碳马氏体、下贝氏体和针状铁素体等韧性较好的组织。另外,应尽量控制晶界偏析。② 韧化处理。对于一些重要的结构,常采用焊后热处理来改善接头的性能。但是对一些大型而复杂的结构,即使要采用局部热处理也是困难的。合理制定焊接工艺,正确地选择焊接线能量和预热、后热温度是提高焊接韧性的有效措施。此外,还有许多能提高HAZ韧性的途径。如细晶粒钢采用控制工艺,进一步细化铁素体的晶粒,也会提高材质的韧性。冶金精炼技术可使钢中的杂质(S、P、O、N等)含量极低。这些措施使得钢材的人行道为提高,从而也提高了焊接HAZ的韧性。04 焊接HAZ的软化 对于焊前经冷作硬化或热处理强化的金属或合金,在焊接热影响区一般均会产生不同程度的矢强现象,最典型的是经过调制处理的高强钢和具有沉淀强化及弥散强化的合金,焊后在热影响区产生的软化或矢强。焊接调质钢时,HAZ的软化程度与母材焊前热处理状态有关。母材焊接前调质处理的回火温度越低,即强化程度越大,则焊后的软化程度越严重。大量实验研究表明,不同焊接方法和不同焊接线能量时,HAZ中软化最明显的部位,是温度处于A1-A3之间的区段。来源:材子笔记

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈