首页/文章/ 详情

BUCK/BOOST电路原理分析,总结的太到位了!

1月前浏览501

第2527期


Buck变换器    

   


也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。



图中,Q为开关管,其驱动电压一般为PWM(Pulse、width、modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy=、Ton/Ts。


Boost变换器    

   


也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。


开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式。



Buck/Boost变换器    

   


也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。



Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。


LDO的特点    

   


① 非常低的输入输出电压差


② 非常小的内部损耗


③ 很小的温度漂移


④ 很高的输出电压稳定度


⑤ 很好的负载和线性调整率


⑥ 很宽的工作温度范围


⑦ 较宽的输入电压范围


⑧ 外围电路非常简单,使用起来极为方便


DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类:


(1)Buck电路——降压斩波器,其输出平均电压、U0小于输入电压Ui,极性相同。


(2)Boost电路——升压斩波器,其输出平均电压、U0大于输入电压Ui,极性相同。


(3)Buck-Boost电路——降压或升压斩波器,其、输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。


(4)Cuk电路——降压或升压斩波器,其输出平均电、压U0大于或小于输入电压Ui,极性相反,电容传输。


DC-DC分为BUCK、BUOOST、BUCK-BOOST三类DC-DC。其中BUCK型DC-DC只能降压,降压公式:Vo=Vi*D


BOOST型DC-DC只能升压,升压公式:Vo=Vi/(1-D)


BUCK-BOOST型DC-DC,即可升压也可降压,公式:Vo=(-Vi)* D/(1-D)


D为充电占空比,既MOSFET导通时间,0<D<1。


开关性稳压电源的效率很高,但输出纹波电压较高,噪声较大,电压调整率等性能也较差,特别是对模拟电路供电时,将产生较大的影响。


因开关电源工作效率高,一般可达到80%以上,故在其输出电流的选择上,应准确测量或计算用电设备的最大吸收电流,以使被选用的开关电源具有高的性能价格比,通常输出计算公式为:Is=KIf 式中:Is—开关电源的额定输出电流;If—用电设备的最大吸收电流;K—裕量系数,一般取1.5~1.8。



电容式开关电源    

   


它们能使输入电压升高或降低,也可以用于产生负电压。其内部的FET开关阵列以一定方式控制快速电容器的充电和放电,从而使输入电压以一定因数(0.5,2或3)倍增或降低,从而得到所需要的输出电压。这种特别的调制过程可以保证高达80%的效率,而且只需外接陶瓷电容。由于电路是开关工作的,电荷泵结构也会产生一定的输出纹波和EMI(电磁干扰)。首先贮存能量,然后以受控方式释放能量,以获得所需的输出电压。


来源:电磁兼容之家
电源电路电磁兼容通用电子控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-01-11
最近编辑:1月前
电磁兼容之家
了解更多电磁兼容相关知识和资讯...
获赞 25粉丝 152文章 2129课程 0
点赞
收藏
作者推荐

如何提高 CAN 收发器的 EMC 性能?!

第2540期在电子产品的设计中,电磁兼容EMC性能对系统的影响非常大,关系到其能正常稳定运转。世界上已经开始对电子产品的电磁兼容性做强制性限制,电磁兼容性能已经成为产品性能的一个重要指标。电磁兼容主要有两方面的内容,一个是产品本身对外界产生不良的电磁干扰影响,称为电磁干扰发射EMI;另一个是对外界电磁信号的敏感程度称为电磁敏感度EMS。干扰源、相合途径及敏感设备是电磁兼容的三要素,缺一不可。在这篇文章中,我将在之前的终端主题的基础上,讨论分离模式终端如何提高用于楼宇自动化系统(如 HVAC)的 CAN 安装的电磁兼容性 (EMC) 性能。CAN 收发器EMC 性能的两个关键指标是抗射频 (RF) 噪声和射频噪声发射。国际电工委员会 (IEC) 61967-4(电磁辐射测量)和 IEC 62132-4(电磁抗扰度测量)测量这两个指标。在这两个标准中,噪声要么通过差分共模耦合网络从网络测量,要么通过网络注入,如图 1 所示。图 1:差分 (a) 发射和 (b) 抗扰度耦合网络当通过图 1(a) 所示的耦合网络测量CAN 网络发射时,网络一侧的理想差分 CAN 信号将不会导致耦合网络另一侧的电气干扰。但是在 CAN 信号中引入失配(如上升沿和下降沿之间的传播延迟、上升/下降沿速率或共模幅度)会产生一个共模信号,该信号将通过耦合网络到达频谱分析仪. 共模的这些变化会导致电磁辐射。图 2 显示了理想信号、所有三种失配类型以及由此产生的共模信号的示例。图 2:CAN 总线信号失配类型 (a) 理想信号、(b) 传播延迟、(c) 上升/下降时间失配和 (d) 差分幅度失配及其对共模的影响此外,由于 CAN 通常使用双绞线布线,因此耦合到电缆上的任何噪声都表现为共模变化,这正是 IEC 62132-4 标准中以这种方式耦合噪声的原因,如图 1 所示(b)。如果您回想一下本系列的第四部分,有一种称为分离端接的端接方案,它为总线上的共模信号创建一个低通电阻电容 (RC) 滤波器。这种分离端接方案将过滤由总线上的收发器引起的共模波动和由外部噪声耦合到总线上引起的共模波动。图 3 和图 4 显示了这种过滤的示例。图 3 显示了一个 CAN 收发器通过两个并联的 120Ω 电阻器发送 500kHz 方波。紫色数学信号显示 CANH + CANL(共模信号的两倍)。图 4 显示了相同的设置,但有一个变化:单个 60Ω 电阻器替换为一个 120Ω 电阻器与一个分离终端(60Ω,4.7nF 接地,60Ω)并联。图右上方数学信号的峰峰值测量和数学信号的伏特/格从图 3 中的 200mV/格变为图 4 中的 100mV/格。图 3:标准终端的 CAN 总线信号示例图 4:具有单一标准终端和单一分离终端的 CAN 总线信号示例如您所见,通过添加两个额外的无源元件来形成分离终端,共模信号峰峰值从 344 mV 下降到 138 mV。这是超过 2 倍的改进!这将提高 CAN 装置的辐射和抗扰度性能。各种干扰设备的辐射很复杂,要真正完全消除电磁干扰是不可能完成的任务。但是可以根据电磁兼容性的基本原理采取措施来最大限度地减小电磁干扰,并使之控制在系统可容纳的范围之内,从而保证系统或设备可靠运行。以上的改善方案,可以很好的提高CAN FD设备的电磁兼容性能。来源:电磁兼容之家

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈