今日更新:International Journal of Solids and Structures 1 篇,Journal of the Mechanics and Physics of Solids 1 篇,Thin-Walled Structures 3 篇
Beyond effective stiffness: A modified differential Mori-Tanaka-Voigt homogenization for predicting stresses in individual inclusions
Deepjyoti Dhar, Atul Jain
doi:10.1016/j.ijsolstr.2024.113152
超越有效刚度:用于预测单个夹杂应力的改进的Mori-Tanaka-Voigt微分均质化
Mean field homogenization (MFH) methods are widely employed for homogenizing heterogeneous materials. However, they are limited to predicting effective properties and phase-averaged stresses, failing to capture stresses within individual inclusions. This paper introduces a novel homogenization approach, termed MDMT-Voigt, aimed at addressing this lacuna. The proposed model is validated extensively using finite element analysis (FEA), encompassing virtual Representative Volume Elements (RVEs) with a range of aspect ratios, volume fractions, and orientation distributions. Furthermore, validation is conducted using RVEs derived from experimentally determined microstructures via micro-computed tomography. Across all models considered, the FEA results yield a range of stresses for inclusions with same orientation and aspect ratio which is captured well by the proposed MDMT-Voigt model. Prediction of stresses in individual inclusions represents a significant advancement over conventional MFH methods, offering substantial potential for enhanced micromechanics modelling comparable to full finite element approaches, but at a computational efficiency order of magnitude lower. The paper ends with a demonstration confirming improved micromechanics using the Modified Coulomb criteria.
平均场均质(MFH)方法被广泛应用于非均质材料的均质化。然而,它们仅限于预测有效性质和相平均应力,而不能捕获单个夹杂物中的应力。本文介绍了一种新的均质化方法,称为MDMT-Voigt,旨在解决这一空白。该模型采用有限元分析(FEA)进行了广泛的验证,包括具有一系列宽高比、体积分数和方向分布的虚拟代表性体积单元(RVEs)。此外,通过微计算机断层扫描实验确定的微观结构,使用RVEs进行验证。在所有考虑的模型中,FEA结果产生了具有相同取向和纵横比的包裹体的应力范围,这被提出的MDMT-Voigt模型很好地捕获。与传统的MFH方法相比,单个包裹体的应力预测是一项重大进步,为增强微观力学建模提供了巨大的潜力,可与全有限元方法相媲美,但计算效率要低一个数量级。最后,用修正的库仑准则验证了改进的细观力学。
Capillary rise in a packing of glass spheres
Ratul Das, Vikram S. Deshpande, Norman A. Fleck
doi:10.1016/j.jmps.2024.105963
毛细管在玻璃球填料中上升
A series of experiments are performed to give insight into the mechanisms of liquid rise in a 3D dense random packing of glass spheres. A sharp knee in the log-log plot of water height h versus time t curve is observed, with an attendant change in h(t) characteristic from h ∝ t0.5 to h ∝ t0.05. This behaviour is observed for 5 choices of diameter distribution of spheres, such that the mean diameter is in the range of 0.22 mm to 1.20 mm, and the ratio of standard deviation to mean diameter lies between 0.014 and 0.157. Immediate arrest in water rise occurs when the water reservoir is removed from the bottom of the column, in support of the conclusion that water rise is by capillary action. In the post-knee regime of the h(t) response, water rise occurs in a jerky manner by a series of jumps, involving transverse jumps and more occasional vertical jumps in water ingress; each jump is by an increment of sphere diameter. The incubation time for each vertical jump is sensitive to height of meniscus and dictates the overall rate of water rise. Pendular-rings at the junctions between glass spheres are not observed above the meniscus; this casts doubt upon the notion that the jerky motion of the meniscus is due to the incubation time for a vapour-fed pendular-ring to grow and coalesce with the meniscus. Possible sources of the height-dependent incubation time for each vertical jump are discussed, including a time-dependent increase in surface tension. Additional insight is obtained by observing water rise, and glycerol rise in (i) a monolayer of glass spheres, (ii) in a capillary tube of diameter slightly greater than that of the glass beads and filled with a single column of glass spheres and (iii) an empty capillary tube. Continued liquid rise beyond the knee in the h(t) curve is noted in all cases except for that of an empty capillary tube.
一系列实验旨在探究玻璃球三维密集随机堆砌中液体上升的机制。在水位高度h与时间t的对数-对数图中观察到一个明显的拐点,伴随着h(t)特征的变化,从h ∝ t0.5变为h ∝ t0.05。这种行为在5种不同直径分布的玻璃球中被观察到,其平均直径在0.22毫米至1.20毫米之间,标准差与平均直径之比在0.014至0.157之间。当从柱子底部移除水容器时,水位立即停止上升,这支持了水位上升是由毛细作用引起的结论。在h(t)响应的拐点后区域,水位以一系列跳跃的方式不规则上升,涉及横向跳跃和更偶尔的水渗透垂直跳跃; 每次跳跃都是一个球体直径的增量。每个垂直跳跃的孵化时间对液面高度敏感,并决定了水位上升的整体速度。在玻璃球接合处的关节处没有观察到摆动环。这使人们对“膝关节液面的抖动是由蒸汽供能的摆环生长并与液面凝聚所需的孵化时间造成的”这一观点产生了怀疑。讨论了每个垂直跳跃高度依赖的孵化时间的可能来源,包括表面张力随时间的变化。通过观察水在(i)一层玻璃球、(ii)直径略大于玻璃珠的毛细管(内装有一根玻璃珠柱)和(iii)空毛细管中的上升情况,获得了更多洞察力。在h(t)曲线中,除了空毛细管的情况外,所有情况下均观察到了液面在膝盖处之后继续上升。
Stainless steel I-section beams at elevated temperatures: Lateral–torsional buckling behaviour and design
Merih Kucukler
doi:10.1016/j.tws.2024.112720
不锈钢工字钢在高温下:侧向扭转屈曲行为和设计
In this paper, a comprehensive investigation into the structural response and design of stainless steel I-section beams susceptible to lateral–torsional buckling (LTB) at elevated temperatures is carried out. A very large number of stainless steel I-section beams are considered, taking into account various cross-section geometries, beam slendernesses and different stainless steel grades and elevated temperature levels. Extensive structural performance data on the behaviour of stainless steel I-section beams are generated through nonlinear shell finite element modelling. Assessment of the existing LTB design rules for stainless steel I-section beams at elevated temperatures provided in the current version of the European structural steel fire design standard EN 1993-1-2 and its upcoming version prEN 1993-1-2 is presented. New LTB design rules based upon an Ayrton-Perry equation that is able to provide a consistent mechanical appraisal of the LTB behaviour of stainless steel I-section beams in fire are proposed. The accuracy and safety of the proposed new LTB design rules for stainless steel I-section beams are comprehensively verified. It is also shown that the proposed LTB design equations in this paper lead to a considerably higher level of consistency and reliability for the LTB design of stainless steel I-section beams in fire relative to the LTB assessment rules provided in EN 1993-1-2 and prEN 1993-1-2.
本文对高温下易受侧向扭转屈曲(LTB)影响的不锈钢工字截面梁的结构响应和设计进行了全面的研究。考虑到不同的截面几何形状、梁的细长度、不同的不锈钢等级和升高的温度水平,考虑了大量的不锈钢工字钢。广泛的结构性能数据的行为不锈钢工字钢截面梁是通过非线性壳有限元建模产生的。介绍了欧洲结构钢防火设计标准EN 1993-1-2和即将发布的版本prEN 1993-1-2中提供的高温下不锈钢工字截面梁的现有LTB设计规则的评估。提出了基于Ayrton-Perry方程的新的LTB设计规则,该规则能够为不锈钢工字截面梁在火灾中的LTB行为提供一致的力学评估。全面验证了所提出的不锈钢工字截面梁LTB设计规则的准确性和安全性。本文提出的LTB设计方程相对于EN 1993-1-2和prEN 1993-1-2规定的LTB评定规则,对不锈钢工字钢火灾条件下的LTB设计具有较高的一致性和可靠性。
Analysis of warping defect formation mechanisms in hot molding of CF/PEEK thin-wall structures and their influence on mechanical properties
Yue Li, Aisha Yang, Yuting Liu, Yu Gao, Jianfeng Zhou, Yan Dong, Shu Zhu
doi:10.1016/j.tws.2024.112740
CF/PEEK薄壁结构热成型翘曲缺陷形成机理及其对力学性能的影响分析
The hot molding of carbon fiber-reinforced polyether ether ketone composites (CF/PEEK) thin-wall structures employs high cooling rates, which cause uneven material shrinkage across different parts and pronounced warping defects. This study fabricated CF/PEEK thin-wall laminates with a thickness of 1.2 mm through die-pressing technology and analyzed the effects of various cooling processes on plate warping. In addition, the study elucidated the formation mechanism of warping defects in CF/PEEK thin-wall structures and plotted a cooling rate curve to determine a strategy for effectively mitigating such defects. Notably, CF/PEEK hot molding warping involves an asynchronous contraction of molecular chains of crystalline polymers, leading to thermal residual stress. This study also investigated the effects of warpage on bending properties and stability. When warpage ranged from 10 to 15 mm, the maximum bending strength deviation along the plane was approximately 150 MPa, indicating that excessive warping substantially reduces bending strength. Moreover, laminates with minor warpage differences exhibited consistent performance stability. Overall, this study provides valuable insights for enhancing the forming quality of CF/PEEK, thereby promoting their application in advanced equipment.
碳纤维增强聚醚醚酮复合材料(CF/PEEK)薄壁结构的热成型采用高冷却速率,导致材料在不同部位收缩不均匀,并出现明显的翘曲缺陷。采用模压工艺制备了厚度为1.2 mm的CF/PEEK薄壁层压板,并分析了不同冷却工艺对板材翘曲的影响。此外,本研究阐明了CF/PEEK薄壁结构翘曲缺陷的形成机理,并绘制了冷却速率曲线,以确定有效缓解此类缺陷的策略。值得注意的是,CF/PEEK热成型翘曲涉及结晶聚合物分子链的异步收缩,导致热残余应力。本研究还探讨了翘曲对弯曲性能和稳定性的影响。当翘曲量为10 ~ 15 mm时,弯曲强度沿平面的最大偏差约为150 MPa,表明翘曲量过大会大大降低弯曲强度。此外,具有较小翘曲差异的层压板表现出一致的性能稳定性。总的来说,本研究为提高CF/PEEK的成形质量,从而促进其在先进设备中的应用提供了有价值的见解。
Determination of residual stress in hybrid laser-arc welded U-rib-to-deck joints by thermo-metallurgical-mechanical simulation and neutron diffraction
Yuantai Li, Shaoning Geng, Jian Li, Zhijian Fan, Chu Han, Jun Jin, Ping Jiang
doi:10.1016/j.tws.2024.112755
用热冶金-力学模拟和中子衍射法测定u型肋-甲板混合激光弧焊接头残余应力
Welding residual stress is crucial to the fatigue performance and reliability of U-rib-to-deck joints, and its accurate measurement and control remains challenging and lacking an effective approach. In this paper, a thermo-metallurgical-mechanical finite element model considering solid-state phase transformation was developed to investigated the residual stress states of U-rib-to-deck joints fabricated using hybrid laser-arc welding technique. Neutron diffraction testing was conducted to determine the residual stress distribution in three orthogonal directions to validate the model. The results showed that solid-state phase transformation involving changes in mixed phase properties and transformation strain significantly influenced the residual stress in hybrid laser-arc welded U-rib-to-deck joints. The low yield strength property of the supercooled austenite and the volumetric expansion of the bainite transformation strain are crucial for residual stress reduction. A reasonable S-shaped agreement trend was observed between residual stress simulation and neutron diffraction data along the potential crack propagated path. Thermo-metallurgical-mechanical modeling helps to control welding residual stress fields via simulation methods, which is crucial to consider solid-state phase transformation. These findings provide support for assessing the fatigue performance of U-rib structures using hybrid laser-arc welding.
焊接残余应力对u型肋-甲板接头的疲劳性能和可靠性至关重要,其精确测量和控制仍然具有挑战性,并且缺乏有效的方法。本文建立了考虑固相转变的热-冶金-力学有限元模型,研究了激光电弧复合焊接u型肋-甲板接头的残余应力状态。通过中子衍射测试确定了三个正交方向上的残余应力分布,验证了模型的正确性。结果表明,固态相变对u型肋-板复合激光弧焊接头的残余应力有显著影响,相变过程中混合相性能和相变应变的变化对残余应力有显著影响。过冷奥氏体的低屈服强度和贝氏体相变应变的体积膨胀是减小残余应力的关键。沿潜在裂纹扩展路径,残余应力模拟结果与中子衍射数据呈合理的s型一致趋势。热-冶金-力学建模有助于通过仿真方法控制焊接残余应力场,这对于考虑固态相变至关重要。这些研究结果为评估混合激光弧焊u肋结构的疲劳性能提供了支持。