1. 项目基本信息
项目名称为
“System Level Analysis of Hydrogen Storage Options”,主要研究人员包括R.K. Ahluwalia、D.D. Papadias、J - K Peng和H.S. Roh等。项目开始于2009年10月,持续至今,每年由美国能源部(DOE)决定是否延续及调整方向。2018和2019财年,DOE分别提供50万美元资助。项目旨在解决氢气存储面临的诸多障碍,如系统重量和体积(A)、系统成本(B)、效率(C)、充放电速率(E)、热管理(J)和生命周期评估(K)等问题。通过开发和使用模型,深入分析物理和材料基汽车氢气存储系统的车载和离车性能,为DOE评估氢气存储系统提供独立、客观的分析,帮助材料开发者对照系统性能目标改进技术,同时确定技术发展过程中的接口问题、机遇以及所需的数据。
2. 项目合作伙伴
项目涉及众多合作伙伴,其中包括HyMARC(由PNNL、NREL、LBNL组成)、Delivery Team、Hydrogen Interface Taskforce(H2IT)、ANL - H2A、ANLHDSAM、HMAT、TARDEC、BMW、LLNL、Ford、ORNL、UM、Strategic Analysis等。各方在项目中发挥不同作用,如Argonne负责开发存储系统配置、确定性能、识别和确定组件尺寸,并将相关信息提供给Strategic Analysis用于制造成本研究。
(一)氢气载体研究
1. 载体选择与成本分析(FY2019 Q1和Q4)
完成了对甲醇、氨和甲基环己烷(MCH)三种氢气载体的初步分析。在与基线气态氢(GH₂)场景对比中,发现甲醇在特定场景下具有成本竞争力。
对于甲醇生产,大规模生产(10,000吨/天)选址于墨西哥湾,该地天然气价格低且能源基础设施完备。其生产采用自热重整(ATR)工艺,资本成本随规模变化,当生产能力大于3000吨/天时,ATR工艺可使资本成本最小化;容量在1800 - 3000吨/天之间时,采用两步重整工艺;小于1500吨/天时则使用蒸汽甲烷重整(SMR)工艺。在该大规模生产场景下,甲醇的生产、传输和分解成本与小规模(350吨/天)生产场景存在差异,总体上大规模生产时生产升本降低(低2.13美元/千克氢气),但传输成本有所增加(高0.50美元/千克氢气)。
氨的生产规模为1000 - 2500吨/天,采用特定工艺(如H₂O/C = 2.8、ultrapure syngas、minimal purge等),其资本成本较高,作为氢气载体比甲醇昂贵,虽然具有一定规模优势,但被较高的传输成本部分抵消。
MCH生产规模为6,700吨/天,反应器在240°C和10 atm条件下运行,转化率受动力学限制,冷凝条件为9.5 atm和45°C,氢气和MCH蒸气循环利用,资本成本高,其大规模生产时的成本节约(1.54美元/千克氢气)被更高的传输成本(增加1.73美元/千克氢气)所抵消。
2. 确定氢气载体目标(FY2019 Q1和Q4)
提出了氢气载体生产、传输和分解的初始目标,旨在实现2美元/千克氢气的总体生产成本。目前,甲醇、氨和MCH的各项成本情况如下:
甲醇的氢气生产、传输、分解和GH₂终端及存储、分配成本分别为1.22美元/千克、0.63美元/千克、0.61美元/千克、1.25美元/千克、1.10美元/千克,总计4.98美元/千克;
氨的对应成本分别为0.96美元/千克、1.32美元/千克、0.61美元/千克、1.25美元/千克、1.10美元/千克,总计6.48美元/千克;
MCH的对应成本分别为0.89美元/千克、2.19美元/千克、0.75美元/千克、1.25美元/千克、1.10美元/千克,总计6.65美元/千克;GH₂的对应成本分别为2.30美元/千克、0美元/千克、0美元/千克、1.25美元/千克、1.40美元/千克,总计4.95美元/千克。
研究发现,甲醇在小于50吨/天氢气需求的过渡阶段可能具有吸引力,其能源效率在不同生产规模下有所不同,大规模生产时假设发电效率为33%,燃料加电力数据显示其在能源效率方面具有一定特点。
(二)大容量氢气存储研究
1. 不同存储方式成本评估(FY2019 Q2)
针对地下管道、衬砌岩洞(LRC)和盐穴三种大容量氢气存储方式进行研究,确定了存储500吨氢气时各自的成本情况。
地下管道存储采用API 5L Grade X52管道,成本受多种因素影响。管道制造方面,如使用24” O.D. schedule 60(0.968”壁厚)管道时,50%的成本源于此;小于该规格时,成本因管道数量、表面涂层、压力测试、挖掘场地等增加;大于该规格时,成本因管道质量、焊接成本、运输成本上升。场地准备成本包括挖掘、回填(管道覆盖1.2 m土壤,管串间80 cm间隙)以及地上设施(管道、阀门、压缩机)等。管道安装成本涵盖屏蔽金属弧焊、射线焊缝检测、接头涂层、静水压测试和干燥等环节。以50吨/天氢气生产能力、10天存储量为例,该地下管道存储设施总体资本成本最低为516美元/千克氢气,平准化成本为2.17美元/千克氢气,成本敏感性在1.87 - 2.39美元/千克氢气之间,具体取决于管道价格历史波动(Δ$359/吨)。
LRC存储基于瑞典Skallen天然气存储示范厂设计,主要成本构成包括Cavern excavation、Tunnel excavation、concrete layer和liner等。当存储压力(Pmax)变化时,成本随之改变,Pmax < 150 atm时,因Cavern excavation、liner和concrete成本显著增加;Pmax > 150 atm时,地下隧道、勘测和土地成本固定,但地上设施(压缩机和管道)成本增加,总体资本成本下降。以50吨/天氢气生产能力、10天存储量计算,平准化成本为0.36美元/千克氢气,成本敏感性在0.31 - 0.43美元/千克氢气之间(基于100 - 250 atm Pmax)。
盐穴存储建设过程包括地质调查、钻孔并安装生产油管、溶液开采、脱盐水和机械完整性测试(MIT)等,相关成本涉及盐水运输(10英里)和处置(二类井)、气体干燥等。主要成本为Cavern construction、Brine disposal和Above ground facility。当盐穴屋顶深度在500 - 1200 m(对应70 - 190 atm存储压力)变化时,成本有增有减,如Pmax > 70 atm时,压缩机尺寸、钻孔和生产油管安装成本因深度增加而上升,但盐水处置和浸出成本因较小的洞穴体积而降低。总体而言,盐穴存储的整体资本成本在Pmax增加时基本保持不变,平准化成本为0.21美元/千克氢气,成本敏感性在0.19 - 0.27美元/千克氢气之间(基于盐水处置成本0 - 2美元/桶)。
2. 存储方式比较与适用场景(FY2019 Q2)
通过比较发现,地下管道存储在存储小于20吨可用氢气时比地质存储(如盐穴和LRC)更经济。大规模存储时,盐穴通常比LRC更经济,但存储超过750吨可用氢气可能需要多个盐穴。不同存储方式的适用场景取决于氢气存储量、成本、地理条件等因素。
(三)中型和重型卡车氢气存储研究
1. 包装选项与存储参数分析(FY2019 Q3)
研究了驾驶室后、车架安装和车顶安装三种包装选项在中型和重型卡车氢气存储中的应用。对于350巴、700巴和500巴(CcH₂)压缩氢气存储,不同包装选项下的坦克体积、氢气存储量、碳纤维需求、重量和体积容量等参数各异。
以驾驶室后安装为例,
350巴氢气存储时,气瓶体积为246 - 415L,氢气存储量为6 - 18kg,碳纤维需求为122 - 429kg;
700巴氢气存储时,车架安装的气瓶体积为620 - 968L,氢气存储量为46 - 73kg,碳纤维需求为382 - 1168kg等。通过ABAQUS/WCM FEA和FESAFE模拟确定了碳纤维复合需求,设定2.25的爆破安全系数和15,000次压力循环条件,得出不同存储条件下的碳纤维需求关系,
如CcH₂ << 350 bar Type - 3 CH₂ ~ 350 bar Type - 4 CH₂ << 700 bar Type - 4 CH₂。
2. 确定休眠特性与未来方向(FY2019 Q3)
确定了低温压缩氢气存储在卡车中的休眠特性,采用40层MLVSI和3毫托真空压力时,95%初始满罐可实现7天以上休眠,休眠时间与储氢量相关且受para - to - ortho转换影响。例如,驾驶室后安装的415L罐可休眠23天,246L罐可休眠17天等。
未来计划继续进行有限元模拟,以进一步验证循环寿命和碳纤维需求,研究卡车氢气存储系统的安装、结构加固和安全问题,同时更新卡车的部件和系统,确保氢气存储系统在中型和重型车辆上的有效应用。
1. 模型开发与分析方法
开发了物理、复杂金属氢化物、吸附剂和化学氢气存储系统中过程的热力学和动力学模型,全面涵盖车载和离车存储目标的各个方面,包括存储容量、充放电速率、排放和效率等。通过对压缩氢气存储罐进行有限元分析,深入评估为实现存储目标所需的材料性能改进和系统配置优化方向。
2. 模型校准、验证与评估过程*
依据不同研究需求选择合适的模型精度,以有效解决系统级问题。在车载系统、离车乏燃料再生、逆向工程等研究中,充分利用模型开展权衡分析,深入理解系统/材料行为。积极校准、验证和评估模型,与DOE技术开发者、国家实验室等密切协作获取数据,并及时反馈研究成果。通过参与各类会议,积极交流项目方法和研究结果,确保DOE赞助的分析活动具有高度一致性,推动整个项目的顺利进展。
1. 为能源部决策提供支持
项目通过独立系统分析,为DOE评估氢气存储系统性能提供了关键依据。帮助DOE全面了解不同氢气存储选项的优缺点,从而在制定能源政策、规划氢气存储设施建设以及推动氢气技术发展等方面做出更科学合理的决策。
2. 助力材料与技术发展
-为材料开发者提供了详细的系统性能评估结果,使其能够明确改进方向,集中精力攻克关键技术难题,加速氢气存储材料的研发进程。同时,项目对不同氢气存储技术的深入分析,有助于识别各种技术在发展过程中的接口问题和潜在机遇,为技术创新和突破提供了重要思路。
3. 推动行业发展与合作
- 项目汇聚了众多科研机构、企业等合作伙伴,促进了各方之间的交流与协作。在项目实施过程中,各方共享资源、优势互补,共同攻克技术难题,不仅推动了氢气存储领域的技术进步,还带动了相关行业(如汽车制造、能源存储等)的发展,提升了整个行业的创新能力和竞争力。
1. 氢气载体研究方向(未来工作)
进一步探索有利于氢气载体应用的场景,特别是与副产品氢气相关的场景,充分挖掘氢气载体在不同工业过程中的潜力。开展多种需求和供应场景下的案例研究,深入分析不同场景对氢气载体的要求,确定更适合可再生氢气生产和能源存储的载体类型。
通过逆向工程,精确确定液体载体的理想属性,重点关注脱氢和氢气纯化的便利性,提高氢气载体的使用效率和经济性。加强与HyMARC联盟的合作,共同分析新兴材料在氢气载体中的应用前景,推动氢气载体技术的不断创新。
2. 大容量氢气存储研究计划(未来工作)
- 继续深入完成对不同存储方法(包括地质和非地质方法)、存储容量(涵盖1 - 10天不同时长)和存储位置(如城市门与前院等不同位置)的全面分析。通过更细致的研究,优化大容量氢气存储方案,提高存储效率,降低成本,为大规模氢气存储设施的建设提供更具操作性的指导。
3. 中型和重型卡车氢气存储研究重点(未来工作)
持续进行有限元模拟,进一步验证氢气存储系统在中型和重型卡车中的循环寿命和碳纤维需求,确保系统的可靠性和耐久性。着重解决卡车氢气存储系统的安装、结构加固和安全问题,制定合理的安装方案和安全标准,提高氢气存储系统在车辆运行过程中的稳定性和安全性。同时,通过实际测试和模拟验证相结合的方式,全面验证氢气存储在重型和中型车辆上的应用效果,为氢气在交通运输领域的广泛应用奠定坚实基础。