今日更新:International Journal of Solids and Structures 1 篇,Journal of the Mechanics and Physics of Solids 3 篇,Mechanics of Materials 1 篇,Thin-Walled Structures 3 篇
Ductile failure by strain localisation: A computational study of materials and structures subjected to highly non-proportional load histories
Martin Kristoffersen, David Morin, Tore Børvik, Odd Sture Hopperstad
doi:10.1016/j.ijsolstr.2024.113128
应变局部化的延性破坏:材料和结构在高度非比例载荷历史下的计算研究
Ductile failure by the onset of strain localisation after non-proportional load paths is investigated herein by using the imperfection version of the strain localisation theory. A computational framework assuming a planar, porous imperfection band inside a homogeneous solid was used to investigate ductile failure as caused by void nucleation, growth, and coalescence. The localisation analysis framework was calibrated based on a single uniaxial tension test and finite element simulations thereof. Despite the somewhat frugal calibration, the localisation analyses successfully reproduced experimentally measured macroscopic fracture strains from notched tension tests and notched compression-tension tests. The method was subsequently applied to a structural problem involving large deformations and complex load paths, and the results show great promise for future work.
本文采用应变局部化理论的缺陷版本,研究了非比例加载路径后应变局部化发生的延性破坏。假设均匀固体内部存在平面多孔缺陷带,采用计算框架来研究由空洞成核、生长和聚并引起的延性破坏。定位分析框架基于单轴拉伸试验及其有限元模拟进行校准。尽管校准成本较低,但定位分析成功地再现了缺口拉伸试验和缺口压缩拉伸试验中实验测量的宏观断裂应变。该方法随后应用于涉及大变形和复杂载荷路径的结构问题,结果显示了未来工作的巨大前景。
The positioning of stress fibers in contractile cells minimizes internal mechanical stress
Lukas Riedel, Valentin Wössner, Dominic Kempf, Falko Ziebert, Peter Bastian, Ulrich S. Schwarz
doi:10.1016/j.jmps.2024.105950
应力纤维在收缩细胞中的定位使内部机械应力最小化
The mechanics of animal cells is strongly determined by stress fibers, which are contractile filament bundles that form dynamically in response to extracellular cues. Stress fibers allow the cell to adapt its mechanics to environmental conditions and to protect it from structural damage. While the physical description of single stress fibers is well-developed, much less is known about their spatial distribution on the level of whole cells. Here, we combine a finite element method for one-dimensional fibers embedded in an elastic bulk medium with dynamical rules for stress fiber formation based on genetic algorithms. We postulate that their main goal is to achieve minimal mechanical stress in the bulk material with as few fibers as possible. The fiber positions and configurations resulting from this optimization task alone are in good agreement with those found in experiments where cells in 3D-scaffolds were mechanically strained at one attachment point. For optimized configurations, we find that stress fibers typically run through the cell in a diagonal fashion, similar to reinforcement strategies used for composite material.
动物细胞的力学在很大程度上是由应力纤维决定的,应力纤维是一种可收缩的纤维束,在响应细胞外信号时动态形成。应力纤维使细胞能够适应环境条件,并保护细胞免受结构损伤。虽然对单个应力纤维的物理描述很发达,但对其在整个细胞水平上的空间分布知之甚少。本文将基于遗传算法的应力纤维形成动态规律与嵌入弹性体介质中的一维纤维的有限元方法相结合。我们假设他们的主要目标是用尽可能少的纤维在大块材料中实现最小的机械应力。该优化任务单独产生的纤维位置和结构与3d支架中的细胞在一个附着点上进行机械拉伸的实验结果非常一致。对于优化的配置,我们发现应力纤维通常以对角线的方式穿过细胞,类似于复合材料的加固策略。
Mechanical properties of modular assembled composite lattice architecture
Cheng Gong, Robert O. Ritchie, Xingyu Wei, Qingxu Liu, Jian Xiong
doi:10.1016/j.jmps.2024.105967
模块化组合复合晶格结构的力学性能
The layer-by-layer additive manufacturing approach results in the 3D printed composite lattice structure fails to exploit fiber reinforcement, thereby resulting in inferior mechanical qualities. To address this challenge, this study proposes a novel approach leveraging composite fused filament fabrication (FFF) printing to design modular assembled composite lattice structures. Initially, three high-performance lattice structures were transformed into discrete 2D components and assembled into 3D lattice structures. Subsequently, the mechanical properties of these structures were comprehensively assessed using theoretical, experimental, and finite element analysis methods. Finally, the comparison between the assembled structures and integrated printed lattice structures in terms of surface quality, mechanical properties, and manufacturability revealed significant advantages. The theoretical and finite element analyses accurately predicted the mechanical properties of the lattice structures. The lattice structures that were assembled in a modular way displayed an impressive 74% improvement in surface finish. Additionally, they showed peak strength increases of 140%, 27%, and 26%, respectively, for the mentioned types of topology. The energy absorption also increased significantly by 510.83%, 44.18%, and 30.24%. Furthermore, these assembled structures required less printing support materials, enhancing their manufacturability and cost-effectiveness. This new method of designing modular space structures goes beyond the limitations imposed by equipment by using high-performance topology. It allows for the construction of large-scale, lightweight space structures that offer excellent performance. This study explores innovative opportunities in the field of space manufacturing, offering potential implications for the development of lunar habitats, space telescopes, and space power stations.
逐层增材制造方法导致3D打印的复合材料晶格结构无法利用纤维增强,从而导致机械质量较差。为了解决这一挑战,本研究提出了一种利用复合熔丝制造(FFF)打印来设计模块化组装复合晶格结构的新方法。首先,将三个高性能晶格结构转化为离散的二维构件,然后组装成三维晶格结构。随后,采用理论、实验和有限元分析方法对这些结构的力学性能进行了综合评估。最后,将组装结构与集成印刷晶格结构在表面质量、力学性能和可制造性方面进行了比较,显示出显著的优势。理论分析和有限元分析准确地预测了晶格结构的力学性能。以模块化方式组装的晶格结构显示出令人印象深刻的74%的表面光洁度改善。此外,对于上述拓扑类型,它们的峰值强度分别增加了140%,27%和26%。能量吸收也显著提高了510.83%、44.18%和30.24%。此外,这些组装结构需要较少的打印支撑材料,提高了它们的可制造性和成本效益。这种设计模块化空间结构的新方法通过使用高性能拓扑结构,超越了设备所施加的限制。它允许建造大型,轻量级的空间结构,提供卓越的性能。这项研究探索了太空制造领域的创新机会,为月球栖息地、太空望远镜和太空发电站的发展提供了潜在的影响。
Latent-Energy-Based NNs: An interpretable Neural Network architecture for model-order reduction of nonlinear statics in solid mechanics
Louen Pottier, Anders Thorin, Francisco Chinesta
doi:10.1016/j.jmps.2024.105953
基于势能的神经网络:用于固体力学非线性静力学模型阶数降阶的可解释神经网络结构
Nonlinear mechanical systems can exhibit non-uniqueness of the displacement field in response to a force field, which is related to the non-convexity of strain energy. This work proposes a Neural Network-based surrogate model capable of capturing this phenomenon while introducing an energy in a latent space of small dimension, that preserves the topology of the strain energy; this feature is a novelty with respect to the state of the art. It is exemplified on two mechanical systems of simple geometry, but challenging strong nonlinearities. The proposed architecture offers an additional advantage over existing ones: it can be used to infer both displacements from forces, or forces from displacements, without being trained in both ways.
非线性力学系统在力场作用下的位移场具有非唯一性,这与应变能的非凸性有关。这项工作提出了一个基于神经网络的代理模型,能够捕捉这种现象,同时在小维的潜在空间中引入能量,保持应变能的拓扑结构;就目前的技术水平而言,这一特点是一种新奇的东西。它在两个简单几何的机械系统上举例说明,但具有很强的非线性。所提出的体系结构比现有的体系结构提供了额外的优势:它可以用来从力中推断位移,或者从位移中推断力,而无需以两种方式进行训练。
Constitutive Modeling of Transformation-Induced Plasticity Steels Considering Strength-Differential Effect
Jaebong Jung, Hyeonil Park, Seung Wook Lee, Ji Hoon Kim
doi:10.1016/j.mechmat.2024.105207
考虑强度差效应的相变塑性钢本构建模
Transformation-induced plasticity (TRIP) steels undergo martensitic phase transformations due to their austenite phase. In this study, using 1-mm-thick TRIP steel at room temperature, the phase transformation behaviors under tensile and compressive modes were measured using a ferrite scope based on the detection of the magnetic volume. A strength differential (SD) effect was observed, where the tensile strength was lower than the compressive strength. The rate of tensile transformation was faster than that of compressive transformation. To account for the SD effect in finite-element analysis, a martensitic kinetics-based constitutive model was developed, which was decomposed into elastic, plastic, Bain, and transformation parts. A larger transformational strain was generated in the tensile mode, and the asymmetric SD effect was captured well by the proposed model.
相变诱发塑性(TRIP)钢由于其奥氏体相而发生马氏体相变。在本研究中,使用1 mm厚的TRIP钢在室温下,使用基于磁体积检测的铁氧体示波器测量拉伸和压缩模式下的相变行为。观察到强度差(SD)效应,其中抗拉强度低于抗压强度。拉伸转变速率大于压缩转变速率。为了考虑有限元分析中的SD效应,建立了基于马氏体动力学的本构模型,将其分解为弹性、塑性、贝恩和变形部分。在拉伸模式下产生较大的转换应变,且该模型较好地反映了非对称SD效应。
Seismic Performance of hollow section concrete-filled GFRP tubular columns under monotonic loads and cyclic loads
Zi-Ming Yang, Ju Chen
doi:10.1016/j.tws.2024.112705
单调荷载和循环荷载作用下中空截面GFRP钢管混凝土柱的抗震性能
The experimental investigation and analytical reporting in this paper focus on the behavior of HS-CFGT members, specifically their response to both monotonic loads and cyclic loads. A total of 8 specimens, divided into two groups, each group with 2 kinds in loading type, including 6 columns under cyclic horizontal loads and 2 columns under monotonic lateral loads, were tested. The details of the experimental setups, procedures, significant observations encompassing failure modes, maximum bearing capacities, displacement corresponding to the peak load, load-displacement hysteretic curves, skeleton curves, stiffness degradation curves, and energy dissipation curves and were truthfully reported. The inspection of the experimental data has yielded several important conclusions regarding the effect of column parameters on the behavior of HS-CFGT columns. The most significant finding is that the influence of concrete strength and FRP tube thickness on the seismic performance of HS-CFGT columns is not independent of each other. Furthermore, the findings additionally suggest that HS-CFGT columns made of high-strength concrete demonstrate commendable ductility. The initial flexural stiffness for the preliminary design of HS-CFGT columns is also provided to facilitate the implementation of this innovative technology.
本文的试验研究和分析报告侧重于HS-CFGT构件的性能,特别是它们在单调荷载和循环荷载下的响应。试验共8个试件,分为两组,每组2种荷载类型,包括循环水平荷载作用下的6根柱和单调侧向荷载作用下的2根柱。详细的实验设置,程序,重要的观察结果,包括破坏模式,最大承载能力,峰值荷载对应的位移,载荷-位移滞后曲线,骨架曲线,刚度退化曲线和能量耗散曲线,并如实报告。通过对试验数据的检验,得出了关于柱参数对HS-CFGT柱性能影响的几个重要结论。最重要的发现是混凝土强度和FRP管厚度对HS-CFGT柱抗震性能的影响不是相互独立的。此外,研究结果还表明,由高强混凝土制成的HS-CFGT柱具有良好的延性。本文还提供了HS-CFGT柱初步设计的初始抗弯刚度,以促进这一创新技术的实施。
Active shovel spinning process: plastic deformation behavior, microstructure, and properties
Lijun Zhang, Lukuan Li, Ning Yang, Su Liu, Hong Chi, Jiayi Xu, Shuai Zhang, Fazhe Sun, Jian Zhong, Qingqiang He, Yulei An
doi:10.1016/j.tws.2024.112714
主动铲纺丝工艺:塑性变形行为、微观结构和性能
In response to the challenges of traditional casting and welding processes for thin disc with cylinder, characterized by excessive weight, complex procedures, and variable seam quality, a novel active shovel spinning (ASS) process is proposed. This technique utilizes a spinning roller to lift the sheet metal radially, gradually forming the cylindrical wall into a monolithic structure. A finite element (FE) analysis model for the ASS of SPHE material is established, with the optimization goals set as the outer diameter ellipticity O¯r, the precision of the outer generatrix L¯I, and the maximum forming force F_max of the spinning roller. Using extreme difference analysis and the Grey Relational Analysis (GRA), multi-objective optimization under various conditions of rotational speed ratio η, feed rate v, and friction coefficient f is conducted to identify the optimal combination of process parameters as η=1.6, v=2, and f=0.15. The plastic flow behavior under these parameters is analyzed, and experimental studies are conducted. The findings reveal extensive metal flow in radial, axial, and circumferential directions. The bulging of the cylinder primarily relies on the deformation of the metal at the upper ends of the inner and outer sides, with greater stress and strain on the outer wall than the inner. The disparity between the deformed and undeformed areas is mainly reflected in the position and diameter of the stress Mohr's circle and the size of the strain Mohr's circle diameter. Due to the increased aspect ratio, refinement, and uniformity of the grains, the ultimate tensile strength σ_UTSi in all directions within the forming area has significantly improved, with a 48% increase in the reduced thickness area σ_UTS1-CD and a 31% increase in the σ_UTS2-CD. These results enhance the understanding of the forming mechanism in the ASS process, thereby providing crucial guidance for optimizing the quality of the formed components.
针对传统铸造和焊接工艺在加工薄壁圆筒时存在的重量过大、工艺复杂、焊缝质量不稳定等问题,提出了一种新型的主动铲刮旋压(ASS)工艺。该工艺利用旋转辊将金属板材向上抬起,逐渐将圆筒形壁板形成为一个整体结构。建立了ASS加工SPHE材料的有限元(FE)分析模型,优化目标设定为外径椭圆度O¯r、外轮廓线精度L¯I和旋压辊的最大成形力F_max。采用极差分析和灰色关联分析(GRA),在不同的旋转速度比η、进给速度v和摩擦系数f条件下进行多目标优化,确定了最佳工艺参数组合为η=1.6、v=2和f=0.15。分析了在这些参数下金属的塑性流动行为,并进行了实验研究。研究结果表明,金属在径向、轴向和周向方向上发生了广泛的流动。缸体凸起主要依靠内、外侧上部金属的变形,外壁的应力和应变大于内壁。变形和未变形区域之间的差异主要体现在应力莫尔圆的位置和直径以及应变莫尔圆直径的大小上。由于晶粒的尺寸、均匀性和精细度的提高,成形区内所有方向上的极限抗拉强度σ_UTSi都有显著提高,其中减薄区域的σ_UTS1-CD提高了48%,σ_UTS2-CD提高了31%。这些结果有助于加深对ASS工艺成形机制的理解,从而为优化成形零件的质量提供关键指导。
Fatigue fracture mechanism and life prediction of steel-aluminium clinched joints under different stress ratios
Yue Zhang, Jianbiao Peng, Ruitao Peng, Bei Lei, Jiachuan Jiang
doi:10.1016/j.tws.2024.112721
不同应力比下钢-铝夹紧接头疲劳断裂机理及寿命预测
Vehicle bodies are subject to complex random loads during travelling, making it imperative to investigate the effects of different stress ratios on the body joining structure. To investigate the fatigue performance of steel-aluminium clinched joints under different stress ratios, fatigue experiments were conducted on these joints subjected to different load levels at stress ratios of -0.4, 0.1, and 0.4. The fracture mechanism of steel-aluminium clinched joints under different stress ratios was investigated through analysis of the joint's fracture morphology and the composition of abrasive chips using Scanning Electron Microscope and Energy Dispersive Spectroscopy. A fatigue life prediction model for steel-aluminium clinched joints was developed by employing the modified Paris formulation of the Wallker equation. The results indicate that joint failure can be classified into three main forms: lower sheet fracture, upper sheet pull-off accompanied by lower sheet fracture and reaching infinite life (2 million times). The lower sheet of a fatigue failure specimen in a steel-aluminium clinched joint exhibited a novel form of fretting damage known as lower sheet inter-plate fretting wear. Furthermore, the application of Walker's improved Paris formula proved to be highly effective in accurately predicting the fatigue life of steel-aluminium clinched joints under different stress ratios, with the predicted results demonstrating excellent agreement with experimental findings.
汽车车身在行驶过程中承受复杂的随机载荷,研究不同应力比对车身连接结构的影响是十分必要的。为了研究不同应力比下钢-铝锁接接头的疲劳性能,在应力比为-0.4、0.1和0.4的情况下,对钢-铝锁接接头进行了不同载荷水平的疲劳试验。利用扫描电镜和能谱分析了钢-铝绞合接头的断口形貌和磨屑组成,探讨了不同应力比下钢-铝绞合接头的断裂机理。采用Wallker方程的修正Paris公式,建立了钢-铝铰接疲劳寿命预测模型。结果表明:节理破坏可分为三种主要形式:下片材断裂、上片材脱落并伴随下片材断裂、达到无限寿命(200万次)。钢-铝铰接疲劳破坏试样的下片表现出一种新的微动损伤形式,即下片板间微动磨损。应用改进的Walker’s Paris公式对不同应力比下钢-铝锁接接头的疲劳寿命进行了准确预测,预测结果与试验结果吻合良好。