亚声速射流中稳定火焰所需的判据被表述为: ,其中 是从喷嘴出口到火焰根部的距离,称为抬升高度; 是从喷嘴出口到两条线交点的距离,其中一条线是射流轴线,另一条线是从未点火射流中空气中氢气化学计量轮廓的最大径向位置向射流轴线所作的垂线。这一观点已通过亚声速射流的实验和模拟得到验证 [23]。对于欠膨胀射流,当根据莫尔科夫等人提出的虚拟喷嘴理论 [26,27,28] 来估算 的值时,得出的结论是相同的 [21]。据报道,持续火焰处于高压极限时的氢气流速也大致相同,且与喷嘴直径无关 [20]。这表明利用激波结构后方的物理量来定义虚拟喷嘴的虚拟喷嘴理论是有效的。上述判据对于定性解释射流火焰的维持情况是有用的,但它无法引发对火焰根部火焰结构的讨论,因为它是利用射流中氢 - 空气混合物的当量比这一平均浓度来确定火焰根部的。此外,火焰根部具有复杂的湍流结构。持续火焰的高压极限难以解释,为此人们已经提出了各种模型 [21,22,23,24,25]。因此,在本研究中,我们将通过使用高速纹影动态图像、激光诊断技术和静电探针技术对火焰根部的火焰结构进行观测和分析,来探讨欠膨胀氢射流火焰的火焰稳定机制。
将氢气加压至15~90兆帕,储存在一个容积为0.01立方米的钢瓶中,然后通过安装在1.5米高处、直径为0.2毫米或0.53毫米的喷嘴向水平方向喷射,在每次实验运行的10~20秒期间,将喷嘴出口前的压力调节至预定值。喷嘴孔是用钻头钻出来的,内部通过电磨进行了抛光处理。氢气的流量是根据实验前后储存钢瓶的压力变化来估算的。对于直径为0.53毫米的喷嘴以及8兆帕或3.5兆帕的射流驻点压力,在图2所示的纹影图像中可以观察到轴对称的、高度欠膨胀的射流流场以及激波结构。由于喷嘴出口处的压力超过大气压,气流在膨胀的同时伴随着气体加速,从而导致速度变化,相应地压力和密度降低。这种膨胀使得周边流线从其初始方向偏离,向外偏离流场中心线。在喷嘴出口边缘形成了一系列膨胀波。这些膨胀波在射流边界的自由表面处被反射为压缩波,它们汇聚并形成一道桶形激波和一个马赫盘。马赫盘周边的流线形成超音速流,该超音速流会穿过斜激波,并且超过90%的总质量流量会通过马赫盘周边的超音速流[29,30]。通过这种方式形成了氢 - 空气混合物,尽管我们处理的是向空气中喷射纯氢气的非预混射流,但已知火焰根部的燃烧是预混燃烧。
在射流压力为8兆帕的稳定火焰条件下,图2(左)展示了一张典型的氢火焰纹影图像。图2(右)通过白色线条和圆圈展示了在高速摄影中观察到的重要现象。可以观察到在火焰根部附近,气体在垂直方向上偏离射流中心的运动(见图2,右)。这种运动是由于燃烧反应形成了直径约为5 - 7毫米的球形火焰结构所致,这些结构在图2(右)中用虚线圆圈标示出来。由于纹影照片是沿光路的合成图像,所以沿着图像边缘可以清晰地辨认出球形火焰结构。这些火焰结构在燃烧过程中依次形成,火焰得以持续维持。这些火焰结构从射流的速度边界位置向外延伸(见图2,右中的两条白色线条)。它们覆盖了预混的氢 - 空气流,并且在被从射流轴线向外推时,可以观察到它们有轻微的旋转。另一方面,在火焰的准稳态条件下,也就是图1中高压极限曲线上的条件下,当喷射压力降低到3.5兆帕时,覆盖在预混空气流上的火焰结构看起来并不稳定,即它们会暂时出现,但很快就会向下游消退(见图3,左)。在准稳态火焰条件下,火焰根部位置随时间的波动幅度要大得多,也就是更接近高压极限曲线(见图4)。图3(右)展示了在将氢气压力降低到3.2兆帕的熄火过程中的一个瞬间画面。此时看不到从速度边界向外延伸的火焰结构,最终火焰熄灭了,而火焰结构也向下游消退得太远了。
图 4 展示了根据纹影动态照片(每秒 20000 帧)得出的从喷嘴出口到火焰根部的抬升距离 随时间的波动情况。火焰根部的位置是通过将每张纹影图像的阴影部分数字化来确定的。8 兆帕时 的值几乎是恒定的,变化幅度在 5 毫米或更小,但对于 3.5 兆帕,其变化幅度可高达 20 毫米。在这两种条件下,发现 的最小值实际上是相同的,即 35 毫米。从图 4(右)可以看出,在 3.5 兆帕时,火焰结构以较大幅度振荡,即会瞬间朝喷嘴方向移动,但随后立即向下游移动,如此反复。与此相反,在 8 兆帕的压力下,图 2 所示的团块状球形火焰结构在图 4(左)所示的大致相同位置依次形成。
2.2. 通过平面激光诱导荧光(PLIF)测量对火焰根部结构的分析
为了详细研究火焰结构,对已报道的通过平面激光诱导荧光(PLIF)技术进行的羟基(OH)自由基二维截面测量结果进行了重新整理 [12,19],并用于本研究的讨论。与氧(O)或氢(H)自由基相比,OH 自由基的寿命较长。因此,OH 在精确确定火焰表面位置方面存在劣势。然而,OH 的浓度要高出数倍。所以,选择 OH 自由基作为 PLIF 测量的目标。在实验中,将掺钕钇铝石榴石(Nd:YAG)激光的二次谐波(光谱物理公司的 Quanta-Ray Pro 290 型号,每脉冲最大能量 1 焦耳,频率 10 赫兹)通过染料激光和倍频器(BBO 晶体)转换为更短的波长,以此作为 OH 自由基的激发源。激发波长为 282.927 纳米,它对应于 OH 分子在 跃迁中的 带吸收线 Q1 (6),这是一条已知的与温度无关的激发线 [31,32]。用带有图像增强器(滨松光子学公司的 C10880 - 03F 型号)的电荷耦合器件(CCD)相机(安道尔科技公司的 Zyla 型号,2560×2160 像素)来检测 OH 自由基的二维图像。观测窗口为 90×90 毫米,图像的空间分辨率约为 0.08 毫米 / 像素。在这些条件下,PLIF 信号接近准饱和状态,可以获得大致的 OH 浓度。关于这项技术的更多使用细节,请参阅以前的出版物 [12,19]。
图 5a 展示了在可持续火焰条件下,连续 20 次 10 赫兹激光脉冲下 OH 的积分分布情况。反应区从射流的中心轴向外扩展,并伴有涡旋。涡旋的形状、规模以及抬升距离 可以与之前进行的大涡模拟(LES)[33,34,35] 进行比较。图 5b、c 展示了图 5a 中虚线所示区域的单次拍摄图像。可以观察到由火焰团簇组成的直径约为 6 - 10 毫米的球形结构。尽管 OH 分布是沿中心轴截取的平面图像,但可以推测球形火焰结构内部包含多个复杂的小火焰。此外,图 5a - c 的实验条件是孔口直径为 0.2 毫米、压力为 82 兆帕(与图 2、图 3 和图 4 中的条件不同),处于更高的欠膨胀射流流态条件下,但如前文所述,基本现象是相似的。
2.3. 离子电流的测量
静电探针技术(离子探针)是一种通过捕捉反应区内的离子分子来检测火焰表面存在与否的方法。这种方法极高的时间分辨率使我们能够测量湍流火焰的结构[36,37]。对通过离子探针获得的离子电流波形进行分析,可以在火焰经过探针时揭示火焰的行为和湍流结构。据报道,离子电流是由火焰中存在的阳离子流产生的[36]。原本计划向氢气中添加约1%的甲烷,但后来发现没有必要。虽然确切原因尚不清楚,但预计实验室及管道中存在的微量金属元素可能是导致这一情况的原因。探针从氢射流中心轴下方插入到球形火焰结构中心附近,这样它就不会干扰射流。图6展示了实验中所使用的离子探针的示意图。接收离子信号的直径为50微米的铂丝,其尖端距离陶瓷管仅0.5毫米暴露于火焰中。由于探针是高阻抗的开路,离子电流相对于噪声较弱,因此提高信噪比就显得尤为重要。为解决这一问题,串联了一个锂离子电池作为电源,以便在 -50伏的高电压下检测火焰中的离子,并且用外径为3毫米的不锈钢管对铂丝进行了电屏蔽。根据之前粒子图像测速(PIV)测量的结果,在当前实验条件下,在火焰根部附近测得的气体流速约为20 - 100米/秒[30]。要获得空间分辨率为0.1毫米的准确离子电流波形,如果考虑到为了进行准确分析,一个信号周期内需要20个数据点,那么数据采样速度似乎需要高于100÷(10⁻⁴×20) = 20兆样本/秒。为实现这一目标,使用了一台能够记录高达200兆样本/秒的高速数据记录仪(HIOKI MR6000)来进行数据采集。
图 6.用于检测火焰中离子电流的静电探针的示意图。
当安装多个静电探针时,人们担心上游探针会对下游探针周围的气流产生干扰,但当探针间距大于 10 毫米时,无论是在纹影图像中还是在离子电流中都未察觉到这种影响。离子电流波动的功率谱密度函数( )与波动频率( )之间关系的典型情况如图 7 所示。在计算 时,使用傅里叶变换程序对 216 即 65536 个随时间变化的瞬时离子电流数据点进行了分析,以获得傅里叶分量 。然后,利用基本公式 将这些分量转换为 ,其中 和 分别代表波动频率和数据采集周期。
在射流压力为 8 兆帕的稳定火焰条件下, 值在 250 至 2000 赫兹范围内有多个峰值。该频率被认为与球形火焰结构内的小火焰相对应。若 为火焰结构的直径, 为其内部火焰的传播速度,则 的值可大致估算为米 / 秒。对于在持续供应给火焰结构的预混气体中传播的湍流火焰来说,这是一个合理的速度。然而,仅从离子电流数据无法明确球形火焰结构内的火焰是连续的还是离散分布的。
另一方面,在射流压力为 3.5 兆帕的准稳态条件下, 值分布在 200 赫兹以下的低值区域。这表明球形火焰结构在射流方向上存在宏观的前后移动,因为该频率几乎与图 2 和图 3 所示的火焰前沿根部的大幅移动频率一致。
通过计算互相关函数来评估两个离子探针之间信号 和 的相似性。互相关函数由以下公式定义,它表示两个信号在时间延迟 下的相关程度:
在数据采集期间, 的平均值被设为零。互相关值越大,所测信号的相似性越高。在本次实验中,安装了两个离子探针,一个 位于靠近火焰根部的球形火焰结构中心,另一个 在第一个探针水平下游 5 毫米或 15 毫米处。在射流压力为 8 兆帕的稳定条件下,如图 8(左)所示,间隔为 5 毫米的 和 探针的互相关函数有许多大峰值,且峰值间隔约为 0.3 毫秒。如果上述火焰结构中的速度是有效的,那么球形火焰结构中小火焰的数量可估算为 ,其中 和 分别代表球形火焰结构的直径和由此推导出的其内部火焰的传播速度。这意味着在旋转的球形火焰结构中有若干火焰相互交叠,并且有些火焰相互独立且不连续。如果球形火焰结构内的所有火焰都是连续的,那么互相关函数就不会像图 8(左)那样有明显的峰值。当两个探针的位置间隔为 15 毫米时,这两个探针之间几乎没有互相关关系(见图 8,右)。这意味着一个火焰结构与相邻的火焰结构不相关。
火焰稳定机制
基于到目前为止所描述的测量和讨论结果,高压氢射流火焰的火焰稳定机制如图 9 所示。它凸显了用于产生实验中所观察到的火焰结构的混合与燃烧过程的动态性和复杂性。在气流边界内,高速空气被马赫盘下游减速的氢气流卷吸。两种气流的相互作用形成了可燃预混物,该预混物被供应给抬升火焰,从而产生如图 9 所示的顺时针轻微旋转的球形火焰结构。由于这些复杂的相互作用,火焰根部的快速燃烧反应导致燃烧结构垂直于射流方向并超出气流边界扩张。据报道,在氢 - 空气的自由基反应中,由起始反应(H₂ + O₂ → HO₂ + H)形成的高浓度 HO₂自由基存在于氢射流火焰的中心轴区域 [12, 20]。图 9 所示的反应性预混物从外部球形火焰结构接收热量,并且吸热起始反应被认为得到了促进。
博尔吉(Borghi)[38] 利用 与 之间的相关性来描绘湍流火焰的结构,其中 、 、 和 分别代表可变速度分量、层流燃烧速度、涡旋直径以及层流火焰厚度 [38, 39, 40, 41]。根据已报道的大涡模拟(LES)数值模拟结果, 的值可估算为 10 - 15 米 / 秒 [33, 34, 35]。当采用文献中的其他数值时, 和 可分别估算为约 5 和 100。卡尔洛维茨数(Karlovitz number) 用于表示火焰拉伸程度,其定义为 ,其中 和 分别为速度梯度和特征速度。同样根据数值模拟结果进行评估时, 的值约为 0.04 - 0.5。这意味着湍流场不会影响火焰的内部结构,因此,利用博尔吉的图表可以推断出,球形火焰结构内的小火焰是带有凹坑的褶皱火焰,不会分裂成更小的碎片。不同研究者对 与湍流结构之间的关系进行了修正 [40, 41, 42, 43, 44]。彼得斯(Peters)将同一区域内的湍流火焰结构认定为波纹状小火焰 [39, 43],但普遍的观点是,火焰根部的火焰是呈波纹状的,不会分裂成更小的火焰碎片。即使在无反应流动的情况下,在射流的外缘附近也会形成涡旋状流动 [33, 35],并且这些涡旋具有与主流方向相反的纵向涡旋结构 [45]。点火时,小火焰会在涡旋中产生,并被认为会形成球形火焰结构。利用该图表进行评估的结果与本研究中通过平面激光诱导荧光(PLIF)和离子探针测量所估算出的火焰结构是一致的。如图 2 和图 3 所示,球形火焰结构在持续点燃氢 - 空气预混物以维持火焰方面起着重要作用。当氢气压力降低时,球形火焰结构变得准稳态,在流动方向上的波动更大,并在熄火极限时被向下游冲刷。
对于直径小于1毫米的圆形喷嘴,持续火焰的低压极限为0.1 - 0.2兆帕,这与在这些压力下存在壅塞流的情况相符。本研究对作为喷嘴直径函数的高压极限下的火焰稳定机制进行了调查和讨论。基于利用高速纹影图像、激光诊断技术和静电探针技术在火焰根部进行的测量,得出了以下结果。在驻点压力为8兆帕且喷嘴直径为0.53毫米的情况下,在欠膨胀射流所产生的激波结构下游观察到了稳定的抬升火焰。在射流边界内,被马赫盘下游减速的氢气流卷吸的空气与氢气混合形成预混物,该预混物被供应给抬升火焰,从而产生直径约为5 - 7毫米的球形火焰结构。观察到团块状的火焰结构在大致相同的位置依次出现。它们在维持火焰方面起着至关重要的作用。基于对羟基(OH)自由基的平面激光诱导荧光(PLIF)测量以及离子电流数据,认为球形火焰结构内部由复杂的多个火焰面组成。将先前数值模拟的结果与本次实验结果相结合可知,球形结构内的火焰是相互交叠且呈波纹状的,不会分裂成更小的碎片。
小工程师总结:
确定低压极限及与壅塞流关系:实验得出对于直径小于 1 毫米的圆形喷嘴,持续火焰的低压极限为 0.1 - 0.2 兆帕,且此情况与壅塞流的存在相符。这为理解在特定压力区间内火焰能够持续存在的基础条件提供了明确依据,有助于进一步探究在该压力附近火焰行为的特点及影响因素。
探究高压极限下的机制:着重对作为喷嘴直径函数的高压极限下的火焰稳定机制进行了研究。通过不同压力条件下的实验观测与分析,深入了解在高压情况下火焰稳定或不稳定的具体表现及内在原因,弥补了以往在这方面研究的不足。
观测火焰根部的流场与火焰结构:利用高速纹影图像等技术,在不同压力条件下(如驻点压力为 8 兆帕、喷嘴直径为 0.53 毫米时)对火焰根部进行观测。发现了在欠膨胀射流产生的激波结构下游的稳定抬升火焰情况,以及在射流边界内空气与氢气混合形成预混物进而产生特定直径(约 5 - 7 毫米)的球形火焰结构这一过程。清晰呈现了火焰根部复杂的流场环境与火焰结构的生成机制,为全面理解火焰稳定所需的微观结构条件提供了直观信息。
展现不同压力下火焰结构的动态变化:对比不同压力下火焰结构的状态,如在 8 兆帕压力下团块状火焰结构在大致相同位置依次出现且能维持火焰稳定;而在压力降低到 3.5 兆帕的准稳态条件下,火焰结构不稳定且会向下游消退,火焰根部位置波动幅度变大。这些观测结果直观展示了压力变化对火焰结构稳定性的影响,为分析火焰稳定机制随压力改变而发生的变化提供了关键依据。
PLIF 测量与离子电流测量的协同分析:通过对 OH 自由基的 PLIF 测量以及离子电流数据的分析,发现球形火焰结构内部由复杂的多个火焰面组成,且火焰是相互交叠且呈波纹状的、不会分裂成更小的碎片。这两种测量手段从不同角度对火焰结构进行了细致剖析,相互印证补充,使得对火焰结构的认识不再局限于表面形态,而是深入到其内部组成及火焰面之间的关系,为准确理解火焰稳定机制在微观层面的运作提供了有力支持。
验证已有理论在特定条件下的适用性:例如在亚声速射流相关判据方面,实验结果可用于检验已有理论在本实验所涉及的欠膨胀氢射流等特定条件下的有效性。若理论预测与实验结果相符,则进一步证实了该理论的普遍适用性;若存在差异,则可促使对理论进行修正与完善。
为新理论与模型的建立提供基础:综合本次实验所揭示的各种关于火焰稳定机制的现象、数据及分析结果,可为后续建立更准确、更全面的火焰稳定理论与模型提供丰富的实际依据,推动该领域理论研究不断向前发展。