三周期最小表面(TPMS)是一种平均曲率为零的周期性光滑曲面,与其他晶格结构相比,其明显优势是可以使用函数表达式及相关特征参数对曲面进行精确描述,同时其表面光滑,整体结构相互贯通。TPMS在外科手术植入物设计、轻量化设计、结构减振降噪、结构吸能隔声设计和传热传质等多方面有着广泛的应用。本文介绍OptFuture新上线的曲面晶格功能,该模块内置了一系列TPMS晶格,可用于各类实际工程问题中的微结构设计场景。
在即将上线的OptFuture V3.0版本中,超材料模块中的晶格结构开发了TPMS晶格,目前内置有Gyroid晶格、Diomand晶格、Neovius晶格、Lidinoid晶格和Primitive晶格,OptFuture TPMS晶格库如表1所示。
近年来,研究人员从不同学科角度出发探索了TPMS晶格在力学、传热和声学等多学科应用性能。在掌握基本结构性能的基础上,开始着重研究如何进一步提升TPMS在不同领域的性能,以满足日益复杂的工业需求。图1展示了各类TPMS晶格填充的简单立方模型。
图1 各类TPMS晶格填充的简单立方模型
TPMS晶格具有比表面积大、全连通和低流动阻力特性,因此可广泛应用于热交换器设计。图2所示结构是一种待优化的热交换器几何模型,使用TPMS晶格生成的弯曲流道可以极大地提高流体与散热器间的接触面积,从而提高流体传热效率。此外,使用TPMS晶格还可以有效减轻热交换器的重量。图3和图4分别为OptFuture使用Gyroid晶格生成高性能热交换器模型以及导出后渲染效果。
图2 待优化热交换器
图3 Gyroid晶格填充热交换器
TPMS晶格作为轻量化微结构也可以应用在轻量化电磁线圈的设计中。图5为一种电磁线圈结构示意图,线圈中的非铁磁部分可以使用晶格结构进行填充,以实现轻量化设计。图6和图7分别为使用Gyroid晶格对线圈外壳填充和填充后导出的渲染效果。
图8 Neovius晶格中底结构
图9 Lidinoid晶格中底结构
TMPS晶格在各类消费品的艺术美观设计方面同样有很多应用,比如建筑和工艺品中应用晶格结构可以获得意想不到的美感。手表中的表壳结构作为外壳有着外观装饰、艺术表达的作用,图11中在表壳上使用Primitive晶格比传统表壳更具有吸引力,图12为表壳渲染效果。
本次为大家介绍了TPMS晶格的特点以及在OptFuture V3.0版本中的TPMS面类晶格的示例,欢迎各位读者朋友们使用该功能,并提出改进建议。我们将在后续的版本中支持更丰富的晶格类型和晶格生成方式。感兴趣的读者朋友可以直接进入我们的官网注册账号进行软件试用。