增材制造 Additive Manufacturing (俗称3D打印) 技术设计自由度,几乎可以制造任何复杂几何形状的零件,在航空航天、汽车、生物医学和能源领域正在引领着金属零部件制造的新时代。目前,钛合金是航空工业中使用最多的 3D 打印金属材料。钛合金广泛应用于航空航天、汽车和能源领域,通常需要复杂的铸造和热机加工,以获得承载应用所需的高强度。
澳大利亚蒙纳士大学增材制造中心黄爱军教授、朱玉满高级研究员领导的研究团队联合上海理工大学、中科院金属所、澳大利亚国立大学、澳大利亚迪肯大学以及美国俄亥俄州立大学利用 3D 打印技术实现了现有商用钛合金(BetaC合金,国内牌号TB9)力学性能的大幅提升,使其具有现有所有 3D 打印金属中最高的比强度。这项研究工作揭示了增材制造可以利用热循环和快速凝固,进而制造超强和热稳定的钛合金,这些皆可以直接呈现在其服役之中,对3D打印领域来说意义是巨大的。
研究人员利用 3D 打印工艺独特的热循环和快速凝固特点,在材料中形成致密、稳定和多重内部孪晶的独特纳米沉淀微观组织结构,从而获得前所未有的拉伸强度。虽然现有工作已经证明在纯金属中实现高密度的纳米孪晶活纳米沉淀相可以获得异常高的强度和足够的延展性,但这种具有致密内部孪晶的纳米沉淀相在现有商用合金中的研究还是首次报道。关注公众 号: 增材制造硕博联盟,免费获取海量增材资料,聚焦增材制造研究与工程应用!
该研究最大的亮点是提出了一种全新的现有商业钛合金沉淀强化方法,可直接用于生产具有复杂形状的部件,并可能应用于目前还无法实现的3D打印承载结构件制造,拓宽现有商用3D 打印钛合金在航空航天工业中的应用,并避免了航空航天领域对新型合金的昂贵、耗时长的认证和研究过程。
相关研究成果以题 “Ultrastrong Nano-twinned Titanium Alloys through Additive Manufacturing” 发表在《Nature materials》上。论文的共同通讯作者为蒙纳士大学黄爱军教授、朱玉满博士和上海理工大学王皞教授,共同第一作者为蒙纳士大学朱玉满博士、张坤博士和中科院金属所的孟智超博士研究生,中科院金属所的杨锐教授和上海理工大学张恺副教授为共同作者。
在这项工作中,研究人员使用常用的激光粉床3D打印技术,制备了一种商业钛合金 (Beta-C)。对打印试样进行了两种不同温度的直接时效热处理。下图为拉伸应力应变曲线,显示经过 480°C 和 520°C 热处理的样品具出人意料的高强度。经过 480°C 后热处理后,极限强度达到了 1611 MPa 并保持了 5.4% 的均匀伸长率。这种强度高于迄今为止报道的所有3D打印钛合金、钢、铝合金以及镍基高温合金,如下图所示。此外,这种合金的强度和延展性可以通过调整热处理方案来调控,从而满足特定应用需求。
激光粉末床熔合LPBF成品和后热处理β-C钛合金的微观结构
doi.org/10.1038/s41563-022-01359-2
来源:增材制造硕博联盟