Nature子刊: 微型换热器中各种流量分布不均量化方法的比较
本文研究目的是使用速度、质量流率、压力和温度来比较各种流量分配不均量化方法。本文准备了一项经过实验验证的数值研究,并对一台具有34个直径为3.1毫米的半圆形通道的热交换器进行了测试。以50、60、70和80 kW/m2的热通量从底部加热微通道。已经测试了0.1、0.2、0.3和0.4 m/s各种入口速度的情况。它导致了总共16种不同热通量和不同进水速度的情况。然后,对于每16种情况,根据速度、压力和温度剖面计算文献中广泛使用的流量分配不均系数。研究表明,每种方法都给出相同参数的其他结果,这些结果应以相同方式定义换热器中的流量分布。因此,文献中发现的换热器中流体分布结论的模糊性可能是由对流量分配不均系数的不同解释引起的。提出了一个归一化流量分配不均系数,该系数对所有使用的热工水力参数给出了相同的结果。
Tuckerman和Pease1证明,减小通道的水力直径会导致更强烈的传热。从那以后,许多研究人员开始针对微通道的传热过程开展研究2,3。然而,众所周知,通道的水力直径越小,速度越大(对于恒定的质量流量),因此会导致压降越高。为了将热交换器中的流体压降保持在合理的水平,可以将总质量流率分成许多分支。它会降低每条路径的速度(同时保持总质量流速恒定),从而降低压降。然而,许多与普通入口和出口歧管相连的小通道会带来另一个水力问题,即分配不均4。这种现象通常被称为流量分配不均,它不仅会在热交换器5中产生问题,还会在其他技术领域(如气体脱硫塔6或燃料电池7)中产生问题。然而,有些时候不均匀流动可能是人们所期待的,并且在某些应用中(例如,在化学工程中设计反应器中的反应时8或在冷却电子设备中,表面上可能会遇到不均匀的热通量9)人们反而会有意使用不均匀的流量分布来提高设备的整体性能。Li等10表明,当出现不均匀的多峰值热通量时,可以调整平行小通道散热器中的流动(每个通道中的质量流率不同)以消除温度热点。因此,流量分配不均(maldistribution)(“不良/不正确/错误”分配)不一定意味着非均匀分配(non-uniformdistribution)。同时,非均匀分配(non-uniformlydistributed)的流量也不总是分配不均的(maldistribution)。然而,在本文中,假设有利的流体分布相当于均匀的速度和温度分布,因此术语“流量分布不均(flow maldistribution)”和“非均匀流动(non-uniformflow)”在此可互换使用。 在过去的几年中,已经发表了一些关于mini、micro、compact和macro通道换热器中流量分配不均的综述11,12,13,14。Dario等人11关注的是平行通道中的两相流分布,其中讨论了影响两相流分布不均的因素以及一些改善流量均匀性的集管设计。Siddiqui和Zubair12从换热器几何形状(主要是歧管)的角度讨论了流量分配不均的问题。作者展示了一些试图从数学上描述流量分布不均的分析模型。Ghani等13主要关注流量分布不均范围内的管汇设计。作者深入讨论了可以区分哪些流形以及特定流形如何影响流体分布。Singh等14描述了几种热交换器(plate, plate-fin和 tube-fin)中的流量分布不均,并说明了相变和属性变化对流量分布的影响。作者的工作主要集中在太阳能收集器和更可持续的能源利用的背景下。 本研究的创新点在于全面总结了之前关于流量分配不均的研究成果,并对先前不明确的结果进行了比较。之前文献中未发现使用不同流量分配不均量化方法重新计算的各种工作结果的比较。总结表明,文献中发现的分歧可能是由流量分配不均系数的不同解释引起的。经过实验验证的数值分析表明,通过对统计数据的分析,可以找到最佳的、通用的流量分配不均系数。前人的工作中主流存在几种量化流量分布不均的方法。因此我们确定了在热交换器的给定通道中可以用于区分的一些主要特征参数,包括:质量流率、速度、压降、温度等。如果流量完全均匀时每个通道中这些物理量应该维持在适当值。定量分析流动不均匀性的方法之一是确定换热器表面的速度场。如果考虑小通道热交换器,那么确定每个平行通道中的速度将允许确定每个通道中的质量流率,这允许描述流量分布不均的现象。只有当每个通道的横截面积已知时,才可能根据通道中的速度计算质量流率。当通过速度量化流量分布不均时,通常假设每个通道具有相同的横截面。这在大多数情况下是正确的,但应该始终牢记这一假设。如果通道具有不同的横截面积,热交换器表面上不均匀的速度场并不一定意味着存在不均匀的质量流速。Kumar等15,16进行了数值研究,表明通过改变单个通道的宽度或高度(横截面积),可以消除流量分布不均。 Kim等17进行了一项实验,其中测量了平行通道中的速度,以确定小通道热交换器中的流量分布不均。使用由铝制成的半圆形横截面(半径1.55mm)的通道。为了能够观察流动并测量通道中的速度,测量部分覆盖了丙烯酸玻璃。可溶于水的红色墨水被周期性地引入在该部分中流动的水中。通过这样的方法,可以观察到没有染色的水和被染红色的水的边界。这条边界后面放置一台高速摄像机,以每秒200帧的速度拍摄水流。在将照片中可见的彩色和染色水的边界所覆盖的距离除以覆盖它所需的时间后,作者获得了每个小通道中的速度。测试在3.33至6.67 cm3/s的体积流速范围内进行,采用I’型流动配置。方程(1)中的表达式被用于确定每个通道中的流量分配不均系数。
在这种情况下,平均速度Uavg是在流动完全均匀的情况下所有通道中出现的速度。作者发现最高速度出现在中央通道中,最低速度出现在侧通道中,这与其他作者的观察结果一致15,16。此外,当流速较高且通道的宽度与长度之比增加时,会出现较大的流量分配不均。热交换器入口和通道之间的距离也影响工作介质的分布。它越高,流动就越均匀,其他研究人员也观察到了这一点18。此外,作者17提出了一个分析得出的分配不均系数方程,该方程涉及换热器的几何参数(宽度、通道长度、通道间距、通道水力直径和通道与入口的距离),这与作者的结果非常吻合。然而,作者强调,这一理论局限于均匀扩散的假设。 Minqiang等18或Dąbrowski等19提出了一种略有不同的流量分配不均系数计算方法,如方程(2)。
上述方程允许计算整个热交换器的上述系数,而不仅仅是方程中的单个通道,方程(1)。这是一种有用的方法,因为它使得不同的热交换器设计能够相互比较,例如具有不同数量的通道。作者从数值上验证了通道的长度、高度和宽度、工作介质入口的位置以及单个通道之间的距离对流量分配不均现象的依赖性。 流量分配不均的另一种定量分析方法是测量质量流率。这种解决流体分布问题的方法使得独立于平行通道的不相等横截面积对正确解释该现象的影响成为可能。热交换器中给定点的质量流率直接影响其运行,包括温度场分布、压降和热能传输效率。 Kumaraguruparan等20对25条平行通道中的质量流量进行了单独测量。他们对水进行了实验和数值模拟。为了估计小通道热交换器中流量分布不均的定量分布,在不使用出口歧管的情况下,为每个小通道单独收集通过通道组的水。整个热交换器的流量分配不均系数使用方程(3)计算。
最小值、最大值和平均值是指单个通道中的质量流量。根据已进行的研究20,作者得出结论,可以区分两种类型的压降:与惯性力有关的压降(速度降低,因此压力增加)和与摩擦力有关的压降。为了减少流量分配不均,有必要减少惯性的影响并增加摩擦的影响。更高的流速恶化了流体分布。数值研究表明,在通道入口处存在气流分离、回流和涡流,它们是导致分布不均匀的原因。作者表示,这些影响可以通过增加液体的粘度来抵消。此外,通道本身应该有更大的压降。 流量分配不均系数也可以分为两个阶段。对此有两种说法21,22。第一种说法体现在方程(4)中,其用于确定每个小通道中的系数。
为了确定它,需要该点的质量流率和流量均匀时每个通道中的质量流率的平均值。最常见的是流过热交换器的总质量流量除以通道数。等于零的流量分配不均系数表示理想流量,该系数越高,所考虑的通道(点)中的质量流量与平均值的差异越大。确定所有通道的流量分配不均系数后,确定标准偏差以计算整个热交换器的总系数(方程5)。
有了它,不同的热交换器可以在设计、通道数量或歧管形状上相互比较,而无需分析单个通道中流量分配不均系数的变化。 除了测量单个通道中的流量或速度之外,另一种量化流量分布不均的方法是测量通道中的压降。压力是流动流体的流体动力学参数之一,与流速直接相关,例如伯努利方程或N-S方程23。为此,单个通道中的压降差异可被视为流体分布质量的指标。这种方法已经被一些研究人员采用。 Siva等24在他们的工作中介绍了描述小通道中流量分布不均的实验和数值研究。对供热水的流量进行了实验测试。最大热通量为50千瓦/平方米。根据对流量分配不均的影响分析的可变参数有:渠道的水力直径(88、176或352µm); 通道数量(5、10或20); 雷诺数(从10到200); 通道和歧管的横截面积之比(0.5或2); 流量配置(U型、Z型或I型)。为了量化流量分配不均,作者24测量了每个通道的入口和出口压力。由于这些测量,有可能计算单个通道中的压降。根据公式(6),流量分配不均系数定义为最大和最小压降差与最大压降之比。
研究表明,通道数量越多,流体分布越差。此外,流动结构对分配不均系数有很大影响。U型分布最差,I型分布最好。当歧管的横截面积与通道的横截面积之比减小时,可以观察到更大的流量分配不均。通过数值研究,作者得出结论:流动的不均匀性与换热器表面的不均匀温度场密切相关。此外,应特别注意数值计算的验证。CFD计算的结果通常质量较差,因此可能与实验不符。这可能是因为,在小通道的情况下,粘性力比惯性力更重要,而惯性力在数值计算中通常不考虑在内。 此外,Maganti等25根据方程(6)提出了计算流量分配不均系数的方法。在这项工作中,对7个平行小通道(水力直径为100µm)中含有纳米颗粒的液体流量进行了数值计算。流动在U型结构中实现,通道的横截面积与歧管的比率为0.2。作者描述了颗粒和流体的分布及其对热参数的影响。据观察,在大热通量和低雷诺数的情况下,流量分布更加不均匀。随着热通量的增加,温度升高,流体的粘度降低,因此粘滞力的影响降低。同时,对于较小的雷诺数,流速随着恒定的水力直径而降低。在之前描述的研究17,20中,流速的降低增加了流量分配不均系数。这是文献中反复出现的不确定性,也是为什么仍应调查所述现象的原因之一。这种差异可能是由测试参数的范围、流量分配不均系数的计算方法或流量类型(单相、两相)造成的。在后来的研究中,Maganti等26还使用压力测量来确定水力直径为100或200µm的7、10或12个平行小通道中的流量分布。实验的雷诺数范围为10至150,输入热通量为2或5千瓦/平方米。测试了三种流量配置:U型、I型和Z型。如前所述,通道的横截面积与歧管的比率等于0.2。结果表明,U型流的流体分布最差,这与其他作者的研究结果一致24。另一方面,根据Maganti等26的说法,Z型流量配置保证了最佳的均匀性,这与Siva等人24的报告相矛盾。然而,Z型和I型之间的流量分配不均系数差异并不显著,因此它们可能是由测量不准确性引起的。此外,作者26发现,尽管流量分布不均是由流体力学引起的,但仅在绝热条件下研究这一现象并不重要。传热条件下的温度分布在冷却系统的设计中起着关键作用。流体的粘度是温度的函数,流动的不均匀性取决于粘性力,因此检查温度场可以更好地了解热交换器的实际设计和操作。 测试流量分布不均的另一种方法是确定热交换器表面的温度分布。最简单的解决方案是使用热成像相机来确定温度场并分析温度升高点的存在和等温线的形状。对于完全均匀的分布,假设热交换器整个表面上的热通量恒定,等温线应为直线,垂直于流体流动方向。温度场的分析允许定性地确定不均匀性。当对流体加热时,流体的温度越高意味着流体的质量流量越低,温度越低则相反。然而,它不允许量化流体的质量流率或速度。要做到这一点,有必要考虑传热和流体与壁面之间的温差。 Li和Hrnjak27开发了一种方法,通过红外相机记录的图像来量化微通道换热器中液体制冷剂的质量流量分布。该方法基于假设每个微通道中流体的质量流率和第二传热流体侧的热效率之间的关系,该热效率基于壁温测量值计算。作者通过数值计算和实验研究验证了他们的方法。测试在冷却系统的蒸发器上进行。蒸发器的冷却能力主要来自液态制冷剂的潜热,因此液体分布比蒸汽分布更重要。 Paz等28根据温度场对流量分布不均进行了定量分析。他们记录了在ORC(Organic Rankine Cycle)装置中运行的蒸发器上使用热成像相机拍摄的图像29,30。乙醇是流经系统的液体。研究表明,可以比较温度场,并在此基础上确定工作介质是否均匀分布。 Vasilev等31对小通道换热器的十种不同配置进行了数值研究,以找到产生最大热效率和均匀温度分布的配置。为了定量比较换热器表面温度场的均匀性,作者引入了方程(7)中的系数。
目前已经发现,在通道中流动的介质速度较低的情况下,因此也在低雷诺数的情况下,可以观察到温度分布均匀性对通道中流动期间方向改变次数的更显著依赖。此外,注意到对于相同的泵送功率,更均匀的温度分布有助于平均努塞尔数的进一步增加。
从上述分析中可以看出,可以使用各种类型的参数(例如速度、质量流速、体积流速、压降或温度)以许多不同的方式量化流量分布不均。作者使用不同的实验技术和数值模拟研究了流量分配不均现象。此外,根据流量分布测试的几何形状在许多方面都有所不同,例如通道数量、流量配置或质量流量。因此,很难比较结果。此外,一些作者24,26注意到U型流的流体分布最差,而另一些作者32注意到V型流的流体分布最不均匀。当将流体流速视为分布不均的参数时,甚至会发现更严重的不一致性。有些作者25声称低流速数值的分布不太均匀,而有些作者17,20的说法恰恰相反。 为了便于比较和解释提到的模糊性,使用各种流量分布不均量化方法重新计算了不同研究的结果。使用公式(2)、(3)、(6)和(7)计算流量分布不均系数时考虑了速度、质量流率、压降和温度分布。选择研究的方式有足够的数据来计算至少4个分布不均系数中的3个。结果如表1所示。数据从测试的渠道水力直径的最低值到最高值排序。所有数据都是在基本的常规情况下获得的,即使某篇论文提出了降低流量分配不均系数的几何形状。
首先,可以得出结论,即使使用的数据描述了相同的结果,每个流量分配不均系数也因选择的方程而异。因此,如果不确保流量分配不均系数是使用相同的公式计算的,就很难对其进行比较。此外,在每种情况下,对于相同的数据,使用公式(3)计算的流量分配不均系数比使用公式(2)计算的流量分配不均系数高几倍。此外,值得注意的是,由计算公式(7)的流量分配不均系数不是百分比值。它有自己的量纲,并且根据热通量的不同而有很大的变化,因此不容易进行比较。第二,当考虑速度(公式2)和质量流率(公式3)时,高流速下的流量分配不均系数较高。尽管如此,使用温度曲线(公式7)计算的相同情况下的系数对于低流速更高。这可能是导致流量分配不均和流速不一致的原因。 也可以看出,最差的流量配置也是模棱两可的。Kumar和Singh9的结果表明,当采用I型流配置时,可获得最佳的流均匀性。然而,对于每个流量分配不均系数,其余测试流量配置的顺序并不相同。最后,各种歧管形状的流量分配不均系数之间的差异并不显著。在数值模拟中,根据Kim等17的实验,考虑了小通道换热器。利用建模软件建立三维模型,并设置流体域。设置工质为水。通道中的流体沿X轴方向流动。以恒定的热通量(沿Z轴方向)从该部分的底部加热水。热交换器的材料假定为铝。入口和出口歧管未被加热。全部热量都被输送到小通道。图1显示了具有34个直径为3.1毫米、长度为120毫米的半圆形通道的小通道热交换器的物理模型。为了研究在某些流速范围内各种分布不均系数的行为,对0.1、0.2、0.3和0.4米/秒的各种入口速度进行了测试。它导致了总共16种不同热通量和不同进水速度的情况。然后,对于每16种情况,根据小通道换热器中的速度、压力和温度分布计算文献中广泛使用的流量分配不均系数。
在数值模拟工作中,进行了以下假设:1.流体的性质与压力无关,只受温度影响;2.流体流动是单相、稳态、不可压缩和三维的;3.连续性、动量和能量方程(公式8、9和10)被视为控制方程,并与上述假设一起用于计算。
本研究忽略重力加速度的影响。水的比热Cp、导热系数k、密度ρ和动力粘度µ取决于温度,符合表2所示的多项式关系。这些多项式是基于NIST标准参考数据库2335在274.15K–372.15K的温度范围内创建的。表2 描述比热Cp、热导率k、密度ρ和动力粘度µ的温度依赖性的多项式系数a、b、c、d、e和f
使用有限体积法(FVM)求解质量、动量和能量守恒方程。动量和能量方程采用二阶迎风格式离散。湍流模型选择SST k-omega模型。正式数值计算前,测试了3个主要和最常见的湍流模型:层流、SST k-ω和k-ε。SST k-omega模型在收敛性和与实验/相关结果的一致性方面取得了最佳结果。众所周知,该模型在靠近墙壁的位置给出了良好的结果(小通道中计算结果理想),在较大体积的管道中给出了良好的结果(在较大的歧管中计算结果理想)36,37,38,39。选择了带有简单压力校正算法的分离隐式求解器来计算整个换热器(入口/出口歧管和小通道部分)的速度场。 所有工况均选择水作为工质。水的入口温度为T=300 K,铝的参数为ρ=2719 kg/m3,Cp=871 J/(kg K),K=202.4 W/(m K)。热量施加在一段的底壁上,热通量q的恒定值为50、60、70和80 kW/m2。热交换器入口处的恒定速度等于0.1、0.2、0.3和0.4 m/s,因此入口处的雷诺数分别为995、1990、2986和3981。单个小通道中的平均速度Uavg分别为0.061、0.122、0.184和0.245 m/s,单个通道中的平均雷诺数分别为115、230、345和460。压力出口边界条件假设在换热器出口处。当连续性、x方向速度、y方向速度和z方向速度的残差值小于10‑3,能量的残差值小于10-6时,认为解是收敛的。 02 模型验证
进行网格无关性研究以确保数值结果的准确性。使用不同数量的元素测试了五种不同的网格:从4.0e5个单元到1.0e7个单元。为了比较各种网格,引入了第j个网格和最细网格之间的测试参数F(速度、压降、温度)的百分比偏差ε(方程11)。所有模拟都选择了出口速度、压降和通道平均温度的绝对百分比偏差小于1%的网格。已经为以下边界条件准备了网格独立性研究和实验验证:120 mm长的小通道、3.33-6 m3/s(200ml/min)的入口流速以及底壁处50 kW/m2的热通量。速度、压降和温度的结果分别显示在图2、3和4中。选择具有约4.6e6个单元的网格进行进一步计算。
图2 网格无关性研究的结果 (u—出口处的平均速度,ε—速度差百分比)
图3 网格无关性研究的结果 (Δp—整个热交换器的压降,ε—压降的百分比差值)
图4 网格无关性研究的结果 (t—小通道中的平均温度,ε—温差百分比)
由于在Kim等人的实验工作中使用了精确的几何形状17,因此当前的模拟可以用实验数据进行验证。为此,引入了归一化速度Un,其数学表达式如公式(12)所示。图5显示了实验和模拟的归一化速度。结果显示了良好的一致性,特别是考虑到测量中存在不确定性。然而,Kim等人的工作中没有不确定性分析17,因此无法标记不确定性。
图5 Kim等人的实验与本模拟的小通道截面的归一化速度比较17
此外,通过比较模拟摩擦系数(公式13)的值,验证了当前的数值模型。在具有Darcy–Weisbach相关性(公式14)的小通道部分,摩擦系数数值的对比分析结果如图6所示。当前模型和理论相关性之间的良好一致性确保了当前数值分析的准确性和可靠性。
图6 当前模拟和Darcy–Weisbach相关的小通道平均摩擦系数的比较
从上述文献综述18,20,21,22,24可以得出结论,为了量化流量分布不均,应考虑通道中的平均速度、质量流率、压降或温度下降(上升)。值得注意的是,在这项特殊研究中,由于通道横截面不变,速度分布与质量流率分布相匹配。此外,可以区分描述整个换热器中流量分布不均的四种类型的方程。然而,并非每种方法都能在文献中找到每个热工水力参数。为了更一致地呈现所有相关性,引入了参数F,该参数对应于通道中的平均速度、压降或温降。公式(15)考虑了通道中参数F的最大值与第I个通道中参数F的值(参考参数F的平均值(如果流量完全均匀)之间的差异。公式(16)考虑了参数F的平均值与第I个通道中参数F的值(参考参数F的平均值)之间的差异。等式(17)考虑了通道中参数F的最大值和通道中参数F的最小值之间的差异,参考参数F的平均值。等式(18)考虑了通道中参数F的最大值和通道中参数F的最小值之间的差异,参考通道中参数F的最大值。在以下考虑因素中,下标为U、p和T的流量分配不均系数指的是分别基于速度、压降和温降作为参数F的系数。此外,下标1、2、3和4指的是从方程(15),(16),(17)和(18)计算的流量分配不均系数。
速度场、压力场和温度场可互换使用,以量化换热器中的流体分布,这不无道理。那些热工水力参数是相互关联的。为了显示这种联系,不仅速度,而且单通道中的压降和单通道中的温降(上升)都以与方程(12)相似的方式进行了归一化。 图7显示了Rech为115、热通量为80 kW/m2的情况下的归一化热工水力参数分布。可以看出,速度和压降分布几乎相同。微通道中的温降分布与其他微通道相反,因为给定通道中的速度越高(流速越高),由于壁面的热通量恒定,温度增加越小。为了直观地显示所有3个参数的行为方式相同,引入了反向归一化温度降,如图8所示。现在可以看出,无论考虑哪个参数(速度、压力、温度),就流量分配不均系数而言,上述热工水力参数分布应给出相同(或非常相似)的结果。 图7 Rech为115和热通量为80 kW/m2的小通道中的示例性归一化速度、归一化压降和归一化温降分布
图8 Rech=115和热通量80 kW/m2,小通道中的示例性归一化速度、归一化压降和反向归一化温降分布
首先,分析了流量分配不均系数(以各种方式计算)如何取决于雷诺数(在此特定情况下为入口速度)和施加于壁面的热通量。为了显示相关性,数据被分为3组图表(图9、10和11),其中每组对应于使用特定热工水力参数(速度、压力或温度)计算的流量分配不均系数。在每组中,有4个图表,每个图表显示特定热通量的数据。此外,每个图表包含4个系列的数据,对应于用于计算流量分配不均系数的各种方法(方程15和18)。 图9 针对不同的热通量q,根据渠道Rech中平均雷诺数的函数,使用速度和各种方法计算流量分配不均系数
图10 在不同热通量q下,根据渠道Rech中平均雷诺数的函数,使用压力和各种方法计算流量分配不均系数
图11 在不同热通量q下,根据渠道Rech平均雷诺数的函数,使用温度和各种方法计算流量分配不均系数 图9显示了利用速度剖面进行计算的流量分布不均系数。可以看出,无论选择何种计算方法,雷诺数越高,流量分布越好。可以看出,方法3和方法4的相关性最高,而方法1和方法2的雷诺数相关性较小。此外,不同热通量的流量分配不均系数之间没有显著差异。 图10中显示了利用压力剖面计算的流量分配不均系数。可以看出,对于大多数计算方法来说,雷诺数越高,流量分布越好。然而,对于方法1,流量分配不均系数几乎是常数,似乎不是线性相关的(相关系数为0.448)。使用的其余方法显示了与雷诺数的高线性相关系数,即方法2、3和4分别为0.912、0.951和0.961。可以注意到方法3和4的线性相关性最高,tanα约为0.008,而方法2约为0.004。此外,不同热通量的流量分配不均系数之间没有显著差异。 图11中显示了利用温度曲线进行计算的流量分配不均系数。同样,可以看出,对于每种计算方法,雷诺数越高,流量分布越好。对于所有方法,线性相关系数约为0.960或更高。然而,可以注意到方法1、3和4的流量分布与雷诺数的线性相关性最高,tanα约为0.005,而方法2的tanα约为0.003。所有数据的共同结论是,方法3和4的流量分配不均系数最高,方法2的流量分配不均系数最低。此外,方法3和4给出的结果总是非常相似,并且受雷诺数的影响最大。此外,本文分析了流量分配不均系数的各种计算方法如何与分配分析中考虑的不同热工水力参数一起工作。参见图8,可以推断出,无论考虑什么热工水力参数,就流量分布不均而言,都应该获得相同(或非常相似)的结果。同样,流量分配不均系数(以各种方式计算得出)显示为应用于壁面的各种热通量的雷诺数函数。为了从不同的角度观察相同的数据,结果被分成4组图表(图12、图13、图14和图15),每组图表对应于使用特定方法计算的流量分配不均系数(方程15–18).在每组中,有4个图表,每个图表显示特定热通量的数据。此外,每个图表包含3个系列的数据,这些数据对应于用于计算流量分配不均系数的各种热工水力参数(速度、压力和温度)。 图12 使用等式(15)计算的流量分配不均系数。以及各种热通量q下通道Rech中平均雷诺数函数的各种参数
图13 使用等式(16)计算的流量分配不均系数。以及各种热通量q下通道Rech中平均雷诺数函数的各种参数
图14 使用等式(17)计算的流量分配不均系数。以及各种热通量q下通道Rech中平均雷诺数函数的各种参数
图15 使用等式(18)计算的流量分配不均系数。以及各种热通量q下通道Rech中平均雷诺数函数的各种参数
在图12中,利用方法1的流量分配不均系数(等式15)用于已显示的计算。可以看出,各种热工水力参数的流量分配不均系数值彼此接近,但它们之间的差异随着雷诺数的增大而增大。速度、压力和温度函数的tanα平均值分别为0.0023、0.0019和0.0049,因此考虑各种热工水力参数时,流量分布和雷诺数的相关性不同。 在图13中,使用方法2的流量分配不均系数(等式16)来进行计算。可以看出,在整个雷诺数范围内,各种热工水力参数的流量分配不均系数值彼此接近。此外,即使使用温度作为计算参数,这种方法似乎对各种热通量都是恒定的。速度、压力和温度函数的tanα平均值分别为0.0029、0.0039和0.0026,因此各种热工水力参数的流量分布和雷诺数的相关性非常相似。 在图14中,利用方法3的流量分配不均系数(等式17)来进行计算。可以看出,特定流量分配不均系数值之间的差异是显著的。还可以观察到,利用温度作为热工水力参数的流量分配不均系数不随雷诺数呈线性变化,这与大多数情况不一致。此外,速度、压力和温度函数的tanα平均值分别为0.0060、0.0078和0.0072。 在图15中,利用方法4(等式18)的流量分配不均系数来进行计算。可以看出,特定流量分配不均系数值与主要趋势和结论之间的差异与方法3相似。利用温度作为计算参数的方法4显著依赖于热通量。速度、压力和温度函数的tanα平均值与方法3中的非常相似,分别为0.0056、0.0073和0.0062。为了比较使用各种参数定量计算流量分配不均系数的各种方法(k=1,2,3或4),根据等式(19)和(20)引入了每种方法的标准偏差。它显示了特定方法是否为所用的每个参数(速度、压力或温度)提供了描述流量分布的相似数值。根据前面的分析,无论使用什么参数进行计算,一个好的指标都应该显示相同(或非常相似)的值。低标准偏差意味着特定的流量分配不均系数在几个热工水力参数之间没有显示出很多差异。
由于流量分配不均系数已经是一个百分比值,因此标准差的单位应解释为一个百分点(pp)。 在图16中,显示了速度、压力和温度之间的不均匀分布系数的标准偏差,选择该系数作为Rech=115和变化的热通量的计算热工水力参数。在这种数据的图形表示中,可以总结出上述所有考虑因素。方法2的最低平均标准偏差为0.58 pp。其他方法显示出明显更高的标准偏差。此外,方法2是唯一一种在整个热通量范围内标准偏差几乎相等的方法。 图16 各种计算方法的各种热工水力参数之间分配不均系数的标准偏差,通道Rech的平均雷诺数为115,热通量q为50、60、70和80 kW/m2。
在图17中,显示了速度、压力和温度之间的分配不均系数的标准偏差,该系数被选为50 kW/m2的q和变化的雷诺数的计算热工水力参数。可以看出,方法1、3和4的标准偏差对雷诺数非常敏感。无论工作流体的入口速度如何,良好的流量分配指示器都应为所有热工水力参数提供相同的结果。似乎与这些变化无关的唯一方法是方法2。此外,它给出了0.58 pp的最低平均标准偏差。 图17 各种计算方法的各种热工水力参数之间分配不均系数的标准偏差,热通量q为50 kW/m2,通道Rech的平均雷诺数为115、230、345和460。
总之,流量分配不均的现象是世界各地科学家研究的主题。主要注意力集中在由公共入口和出口歧管连接的平行小通道组中的流体分布。如前所述,有许多方法可以量化流量分配不均。然而,各种方法使用不同的热工水力参数,并将最小值、最大值或平均值相互比较。此外,一些方法仅用于压力分布,而其他方法使用温度或速度。方法的多样性很大,导致结论不一致。此外,流量分布不均系数的变化导致难以比较不同研究的值。即使使用的数据描述了相同的结果,流量分配不均系数也会因选择的方程而异。 在目前的研究中,使用根据方程(15)–(18)描述的每种方法的所有热工水力参数对最常见的流量分布量化方法进行了比较。这种方法使我们能够看到特定的方法如何与特定的热工水力参数一起工作。在分析过程中,得出的结论是,最佳流量分配不均系数应对每个热工水力参数产生相同的结果。此外,它不应受到热通量的影响,因为温度分布是流量分布的结果,而不是原因。 就所有热工水力参数的稳定结果而言,流量分布的最佳定量指标是公式(16)中的方法2。它可以简化为方程式(21)所示的形式。归一化的流量分配不均系数可以考虑任何归一化的热工水力参数Fn(归一化的通道速度、归一化的通道压降、归一化的通道温降(升))。第I个通道中的归一化热工水力参数可由等式(22)定义。
翻译转载自《Nature》子刊Scientific Report "Comparison of various fow maldistribution quantifcation methods in mini heat exchangers"