首页/文章/ 详情

【新文速递】2023年9月27日复合材料SCI期刊最新文章

1天前浏览31


今日更新:Composite Structures 2 篇,Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 1 篇,Composites Science and Technology 1 篇

Composite Structures

Numerical modeling and experimental validation of lamina fracture and progressive delamination in composite dovetail specimens under tensile loading

Noh Hong-Kyun, Go Myeong-Seok, Hyuk Lim Jae, Choi Yun-Hyuk, Kim Jong-Gu

doi:10.1016/j.compstruct.2023.117578

拉伸加载下复合材料燕尾槽试样层状断裂和渐进分层的数值建模和实验验证

In this work, a numerical simulation was conducted to investigate the lamina fracture and progressive interlaminar failure behavior of a dovetail specimen of composite fan blades. Through-thickness compression (TTC) will strengthen the interphase properties as the applied pressure increases and degrade the tensile strength combined with the in-plaen shear stress, which greatly affects the overall tensile behavior on the composite dovetail specimen. This was realized with the aid of ABAQUS user subroutines VUSDFLD and VUMAT, along with an experimental validation. To demonstrate the performance of the proposed approach, two sets of tensile tests were conducted on specimens with different stacking sequences with a digital image correlation (DIC) device to investigate the deformation configurations, as well as the load-displacement curves of the gauge section. The obtained results exhibited a remarkable agreement with the simulation results, particularly in terms of the first delamination load and lamina fracture load. To further validate these observations, a sensitivity analysis was carried out. This analysis took into consideration the uncertainties associated with parameters such as the longitudinal Young’s modulus, interphase properties, friction coefficient, and the position of the contact pad.

本研究对复合材料风扇叶片燕尾槽试样的薄片断裂和层间渐进破坏行为进行了数值模拟研究。通厚压缩(TTC)会随着施加压力的增加而增强相间特性,并降低拉伸强度和板内剪应力,从而极大地影响复合材料燕尾形试样的整体拉伸行为。这一点借助 ABAQUS 用户子程序 VUSDFLD 和 VUMAT 以及实验验证得以实现。为了证明所提方法的性能,使用数字图像相关(DIC)设备对具有不同堆叠序列的试样进行了两组拉伸试验,以研究试样的变形配置以及量具截面的载荷-位移曲线。所得结果与模拟结果非常吻合,尤其是在首次分层载荷和薄片断裂载荷方面。为了进一步验证这些观察结果,还进行了敏感性分析。该分析考虑了与纵向杨氏模量、相间特性、摩擦系数和接触垫位置等参数相关的不确定性。


Low-velocity impact response of thermoplastic composite sandwich panels with the intersected corrugated core

Pan Xin, Chen Liming, Deng Jianqiang, Zhao Wanqi, Jin Shuai, Du Bing, Chen Yong, Li Weiguo, Liu Tao

doi:10.1016/j.compstruct.2023.117574

带相交波纹芯材的热塑性复合夹芯板的低速冲击响应

Thermoplastic composite corrugated sandwich panels (TPC-CSPs) with light weight and high damage tolerance are becoming one of the popular choices for impact protection structures in the marine and aerospace applications. In this work, intersected corrugated sandwich panels (ICSPs) of the same thickness as regular corrugated sandwich panels (RCSPs) were fabricated using simple but efficient slotting and interlocking methods. The impact response and damage mechanisms of ICSPs and RCSPs with different impact locations under various impact energy were obtained through a series of low-velocity impact (LVI) tests. The results show that impact on the long span causes greater structural damage to the RCSPs, while the ICSPs can maintain good integrity after unloading. In the case of 200 J impact energy, the peak force of ICSPs is 15.3% and 21.4% higher than that of RCSPs-SS and RCSPs-LS respectively, and has a comparable energy absorption capacity to RCSPs. The finite element (FE) model was established to analyse the response process of the structure and to explore the effect of staggered angles on the deformation and load-carrying capacity. The ICSPs are considered to have better impact resistance and could provide a new idea for the protection structure design.

热塑性复合波纹夹层板(TPC-CSPs)重量轻、损坏耐受性高,正成为海洋和航空航天应用中冲击防护结构的热门选择之一。在这项工作中,采用简单而有效的开槽和互锁方法,制作了与普通波纹夹芯板(RCSP)厚度相同的相交波纹夹芯板(ICSP)。通过一系列低速冲击(LVI)试验,获得了不同冲击能量下不同冲击位置的 ICSP 和 RCSP 的冲击响应和破坏机理。结果表明,对大跨度的冲击会对 RCSP 造成更大的结构破坏,而 ICSP 在卸载后能保持良好的完整性。在冲击能量为 200 J 的情况下,ICSP 的峰值力分别比 RCSPs-SS 和 RCSPs-LS 高 15.3% 和 21.4%,其能量吸收能力与 RCSPs 相当。建立了有限元(FE)模型来分析结构的响应过程,并探讨交错角度对变形和承载能力的影响。ICSP 被认为具有更好的抗冲击能力,可为防护结构设计提供新思路。


Composites Part A: Applied Science and Manufacturing

Influence of water absorption on the interlaminar behavior of carbon fiber-reinforced composites containing halloysite nanotubes

Kim Eunjung, Ahn Cheol-Hee, Yu Woong-Ryeol, Na Wonjin

doi:10.1016/j.compositesa.2023.107811

吸水性对含有哈洛来石纳米管的碳纤维增强复合材料层间行为的影响

Polymer matrix composites deteriorate during prolonged exposure to water, especially at the fiber–matrix interface. Herein, water absorption and interfacial mechanical property degradation were evaluated after the addition of halloysite nanotubes (HNTs), which are inexpensive tube-shaped nanofillers. The water absorption ratio of the composite containing HNTs was lower than that of the reference. The mechanical properties, including flexural strength and interlaminar shear strength, were also less degraded in the composite containing HNTs. This improvement was attributed to the HNT nanofiller reinforcing the matrix and bridging propagating cracks. Concurrently, the HNTs acted as a water absorbent and water barrier, thereby preventing damage to the fiber–matrix interface by water. Halloysite nanotubes are suitable as a filler for applications exposed to high humidity or aqueous environments.

聚合物基复合材料在长期暴露于水中时会发生老化,尤其是在纤维-基体界面处。在此,我们评估了添加哈洛来石纳米管(HNTs)(一种廉价的管状纳米填料)后的吸水性和界面力学性能退化情况。含有 HNTs 的复合材料的吸水率低于参考材料。含有 HNTs 的复合材料的机械性能,包括抗弯强度和层间剪切强度,也降低了。这种改善归因于 HNT 纳米填料增强了基体并弥合了扩展的裂缝。同时,HNT 还起到吸水和隔水的作用,从而防止了水对纤维-基体界面的破坏。霍洛石纳米管适合用作暴露在高湿度或水性环境中的应用的填料。


Composites Part B: Engineering

Cracking behaviour and its suppression mechanisms with TiB2 additions in the laser additive manufacturing of solid-solution-strengthened Ni-based alloys

Zhang Zhenhua, Han Quanquan, Liu Zhongyi, Wang Liqiao, Zhang Han, Zhao Peng, Zhu Guoliang, Huang Chuanzhen, Setchi Rossitza

doi:10.1016/j.compositesb.2023.111023

在固溶强化镍基合金的激光增材制造过程中添加 TiB2 后的裂纹行为及其抑制机制

This study systematically investigated the cracking mechanisms in the laser powder bed fusion (LPBF) of GH3230 solid-solution-strengthened Ni-based alloy (GH0). The results show that the micro-cracks that formed in GH0 specimens included both solidification and solid-state cracks. The initiation of solidification cracks was associated with the formation of continuous liquid films on high-angle grain boundaries at the final stage of solidification, while the solid-state cracks were found to be ductility-dip cracks, associated with a reduction in the material's plasticity within the heat-affected zone. The study also found that the residual stresses decreased with increasing LSS values, leading to reductions in crack length. The introduction of 1 wt% TiB2 particles to GH3230 (GH1-composite) was found to suppress cracking by promoting grain refinement and generating special high-angle grain boundaries, although residual thermal stresses increased. The ultimate tensile strength values of the GH0 and GH1-composite specimens at 900 °C were found to be 213 and 352 MPa, respectively. These findings provide significant insights into the LPBF of high-performance crack-free Ni-based superalloys.

本研究系统研究了 GH3230 固溶强化镍基合金(GH0)在激光粉末床熔化(LPBF)过程中的开裂机理。结果表明,在 GH0 试样中形成的微裂纹包括凝固裂纹和固态裂纹。凝固裂纹的产生与凝固最后阶段高角度晶界上连续液膜的形成有关,而固态裂纹则是韧性-浸渍裂纹,与热影响区内材料塑性的降低有关。研究还发现,残余应力随着 LSS 值的增加而减小,从而导致裂纹长度缩短。研究发现,在 GH3230(GH1 复合材料)中引入 1 wt% 的 TiB2 颗粒可通过促进晶粒细化和产生特殊的高角度晶界来抑制开裂,尽管残余热应力有所增加。在 900 °C 时,GH0 和 GH1 复合材料试样的极限拉伸强度值分别为 213 和 352 兆帕。这些发现为高性能无裂纹镍基超合金的 LPBF 提供了重要启示。


Composites Science and Technology

Effect of spherical alumina crystalline phase content and particle size distribution polydispersity on the properties of silicone rubber composites

Wang Yu, Liu Tinglong, Zhang Huan, Luo Nian, Chen Feng, Fu Qiang

doi:10.1016/j.compscitech.2023.110273

球形氧化铝结晶相含量和粒度分布多分散性对硅橡胶复合材料性能的影响

High loading of thermally conductive fillers for enhancing thermal conductivity (TC) conflicts with proper rheological viscosity in excellent thermal interface materials (TIMs), which remains a significant challenge. The physical properties (crystalline phase, particle size and distribution, etc.) of thermally conductive filler are the base of the high load in the polymer. In this paper, the α-phase content of spherical aluminum (S–Al2O3) increases after calcination, leading to the viscosity of composites increasing sharply but was only slightly improved for the TC. The polydispersity of the S–Al2O3 particle size distribution was regulated to fill the silicone rubber under the premise of controlling the same average particle size, crystalline phase content and filling amount. Results indicated the viscosity of the sample with a polydispersity value of 0.74 was 41.21 Pa s at a shear rate of 10 s−1 at 66 vol%, which was 87.7% lower than that of the sample with a polydispersity value of 0.48. And the viscosity difference became more prominent with the increasing filling amount. However, the difference in TC between several groups of samples with different polydispersity is insignificant at 60–67 vol%, which provides practical, theoretical guidance for achieving controllable viscosity and developing low-viscosity TIMs in the processing process.

为提高热导率(TC)而大量添加导热填料,会与优异的热界面材料(TIM)中适当的流变粘度相冲突,这仍然是一个重大挑战。导热填料的物理性质(晶相、粒度和分布等)是聚合物中高负载的基础。在本文中,球形铝(S-Al2O3)的α相含量在煅烧后增加,导致复合材料的粘度急剧增加,但对 TC 仅有轻微改善。在控制平均粒径、晶相含量和填充量相同的前提下,调节 S-Al2O3 粒径分布的多分散性以填充硅橡胶。结果表明,在剪切速率为 10 s-1 且体积分数为 66% 时,多分散度值为 0.74 的样品的粘度为 41.21 Pa s,比多分散度值为 0.48 的样品低 87.7%。而且,随着填充量的增加,粘度差异变得更加明显。然而,在 60-67 Vol%时,几组不同多分散度的样品之间的 TC 差异并不明显,这为在加工过程中实现可控粘度和开发低粘度 TIM 提供了实用的理论指导。



 


来源:复合材料力学仿真Composites FEM
ACTMechanicalAdditiveSystemAbaqus断裂复合材料航空航天增材海洋裂纹理论材料控制试验
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-11-03
最近编辑:1天前
Tansu
签名征集中
获赞 0粉丝 0文章 143课程 0
点赞
收藏
作者推荐

【新文速递】2023年9月29日固体力学SCI期刊最新文章

祝大家中秋快乐~~今日更新:Mechanics of Materials 2 篇,Computer Methods in Applied Mechanics and Engineering 1 篇,Thin-Walled Structures 4 篇Mechanics of MaterialsA crystal plasticity model of Dynamic Strain Aging for a near-α Ti-alloyKazim Syed Mustafa, Prasad Kartik, Chakraborty Pritamdoi:10.1016/j.mechmat.2023.104814用于近 α 钛合金的晶体塑性动态应变老化模型Timetal-834, a near-α Ti-alloy, finds use in aeroengines due to its favorable properties. However, the alloy exhibits Dynamic Strain Aging (DSA) in the temperature range of 350-475 °C, that can cause it to fail early during service. As DSA is due to the micro-scale interaction between the diffusing solutes and mobile dislocations, a crystal plasticity model is developed in this work to capture this phenomenon. Additionally, the influence of the α (HCP) and β (BCC) laths of the transformed-β colony of this alloy on the DSA behavior is captured by using an equivalent model based on Taylor’s assumption. The effect of slip system dependent lath and colony size effect due to Burger’s Orientation Relation is also incorporated. Crystal plasticity finite element method simulations of polycrystalline domains, representative of Timetal-834, are performed for calibration and validation of the model using the available temperature dependent experimental data, and successfully capture the flow stress and DSA behavior. The strain rate dependency of DSA predicted by the model also shows an excellent agreement when compared with experimental data. Microstructural analysis of the simulations show that the orientation of grains/colonies have a strong influence on the aging time and hence the DSA response. Also, the initiation of DSA and frequency of serrated slip on the aligned systems of laths show differences due to dissimilar resistances and constraints on plastic flow. Overall, the model developed in this work can capture the microstructure dependent DSA and can be utilized for engineering of Timetal-834.Timetal-834,一种近似于 α 钛合金,因其良好的性能而被用于航空发动机。然而,这种合金在 350-475 °C 的温度范围内会出现动态应变老化 (DSA),导致其在使用过程中提前失效。由于 DSA 是由扩散溶质和移动位错之间的微尺度相互作用引起的,因此本研究建立了一个晶体塑性模型来捕捉这一现象。此外,还考虑了 α (HCP) 和 β β 通过使用基于泰勒假设的等效模型,可以捕捉到这种合金对 DSA 行为的影响。此外,还纳入了滑移系统相关板条的影响以及伯格方位关系导致的菌落大小影响。利用现有的温度相关实验数据,对 Timetal-834 的代表性多晶畴进行了晶体塑性有限元法模拟,以校准和验证模型,并成功捕捉了流动应力和 DSA 行为。与实验数据相比,模型预测的 DSA 应变速率依赖性也显示出极佳的一致性。模拟的微观结构分析表明,晶粒/菌落的取向对老化时间有很大影响,因此也会影响 DSA 响应。此外,由于塑性流动的阻力和约束条件不同,DSA 的启动和锯齿状滑移在排列整齐的板条系统上的频率也存在差异。总之,本研究开发的模型可以捕捉与微观结构相关的 DSA,并可用于 Timetal-834 的工程设计。Design of partially covered bilayer thin film actuatorsPeeketi Akhil Reddy, Swaminathan Narasimhan, Annabattula Ratna Kumardoi:10.1016/j.mechmat.2023.104816设计部分覆盖的双层薄膜致动器One approach to create bending deformation using active materials is to fully cover a passive substrate with the active material. The active layer expands/contracts in response to an external stimuli, while, the passive layer doesn’t deform, thereby, generating a strain gradient through the thickness, and hence, bending. However, a recent experimental study [Pozo, M et al. ACS Appl. Mater. Interfaces, 13, 59381–59391 (2021).] showed that a partially covered (40%) bilayer deformed as much as the “standard” fully covered bilayer. To elucidate such a non-standard response of bilayers, we have developed an analytical model using the strain energy minimization. The developed model showed that the deformation of the bilayer may actually either increase or decrease or saturate with the increase in the coverage depending on the moduli ratio and the thickness ratio of the active and passive layers. Design strategies for actuators considering their curvature and bending stiffness are proposed based on the implications of the developed model. The present study also shows the potential for designing patterned actuators with multiple coverings (may have multiple active layers that are responsive to different stimuli) to realise different actuations based on the choice of the trigger from a single actuator creating multi-modal, multi-stimuli-responsive actuators.使用活性材料产生弯曲变形的一种方法是用活性材料完全覆盖被动基底。活性层在外部刺 激下膨胀/收缩,而被动层不会变形,从而在厚度上产生应变梯度,进而产生弯曲。然而,最近的一项实验研究[Pozo, M et al. ACS Appl. Mater. Interfaces, 13, 59381-59391 (2021)。为了阐明双分子层的这种非标准响应,我们利用应变能最小化建立了一个分析模型。所建立的模型表明,双分子层的变形实际上可能随着覆盖率的增加而增大或减小或饱和,这取决于主动层和被动层的模量比和厚度比。根据所开发模型的含义,考虑到致动器的曲率和弯曲刚度,提出了致动器的设计策略。本研究还显示了设计具有多个覆盖层(可能有多个对不同刺 激做出响应的主动层)的图案致动器的潜力,从而根据从单个致动器中选择的触发器实现不同的致动,创造出多模式、多刺 激响应的致动器。Computer Methods in Applied Mechanics and EngineeringImage-guided subject-specific modeling of glymphatic transport and amyloid depositionJohnson Michael J., Abdelmalik Michael R.A., Baidoo Frimpong A., Badachhape Andrew, Hughes Thomas J.R., Hossain Shaolie S.doi:10.1016/j.cma.2023.116449以图像为指导的特定受试者血流传输和淀粉样蛋白沉积建模The glymphatic system is a brain-wide system of perivascular networks that facilitate exchange of cerebrospinal fluid (CSF) and interstitial fluid (ISF) to remove waste products from the brain. A greater understanding of the mechanisms for glymphatic transport may provide insight into how amyloid beta (A β ) and tau agglomerates, key biomarkers for Alzheimer’s disease and other neurodegenerative diseases, accumulate and drive disease progression. In this study, we develop an image-guided computational model to describe glymphatic transport and A β deposition throughout the brain. A β transport and deposition are modeled using an advection–diffusion equation coupled with an irreversible amyloid accumulation (damage) model. We use immersed isogeometric analysis, stabilized using the streamline upwind Petrov–Galerkin (SUPG) method, where the transport model is constructed using parameters inferred from brain imaging data resulting in a subject-specific model that accounts for anatomical geometry and heterogeneous material properties. Both short-term (30-min) and long-term (12-month) 3D simulations of soluble amyloid transport within a mouse brain model were constructed from diffusion weighted magnetic resonance imaging (DW-MRI) data. In addition to matching short-term patterns of tracer deposition, we found that transport parameters such as CSF flow velocity play a large role in amyloid plaque deposition. The computational tools developed in this work will facilitate investigation of various hypotheses related to glymphatic transport and fundamentally advance our understanding of its role in neurodegeneration, which is crucial for the development of preventive and therapeutic interventions.脑 glymphatic 系统是一个由血管周围网络组成的全脑系统,可促进脑脊液(CSF)和脑间质(ISF)的交换,清除脑内的废物。更深入地了解甘液转运的机制可能有助于深入了解淀粉样蛋白β(A β )和 tau 凝聚物是阿尔茨海默病和其他神经退行性疾病的关键生物标志物,它们是如何积累并推动疾病进展的。在这项研究中,我们建立了一个图像引导的计算模型,以描述甘液运输和 A β 沉积。A β 运输和沉积模型采用平流扩散方程和不可逆淀粉样蛋白累积(损伤)模型相结合的方法。我们采用沉浸等距分析法,并使用流线型上风彼得罗夫-加勒金(SUPG)方法进行稳定,其中传输模型是使用从脑成像数据中推断出的参数构建的,从而形成一个考虑到解剖几何和异质材料特性的特定受试者模型。根据扩散加权磁共振成像(DW-MRI)数据构建了小鼠大脑模型内可溶性淀粉样蛋白运输的短期(30 分钟)和长期(12 个月)三维模拟。除了与示踪剂沉积的短期模式相匹配外,我们还发现 CSF 流速等传输参数在淀粉样斑块沉积过程中发挥着重要作用。这项工作中开发的计算工具将有助于研究与血流转运相关的各种假说,并从根本上促进我们对血流转运在神经变性中作用的理解,这对开发预防和治疗干预措施至关重要。Thin-Walled StructuresSurface microtexturing design, laser-etching and adhesive failure of aluminum alloy single-lap-joint: Experiment and simulationJiang Shulan, Zhang Ao, Zhan Xiaobin, Jiang Hongyongdoi:10.1016/j.tws.2023.111237铝合金单搭接接头的表面微纹理设计、激光蚀刻和粘合失效:实验与模拟This study investigates the design and laser etching of surface microtextures on Al substrate to significantly improve the adhesive performance. Microstructures with different patterns were designed and fabricated. Also laser etching parameters such as etching power, line space and number of scans were thoroughly studied. The obtained microstructures exhibit excellent hydrophilicity, which is beneficial for the permeation of adhesives and formation of micromechanical interlocking. When testing the shear strength of the Al single-lap-joint, the results show great improvement compared with unetched specimens. In terms of the significance of laser parameters and textures on shear strength, power is the most significant, followed by number of scans, and finally line space and textures. The specimen designed with X-texture and etched by 20 W with scan space of 0.2 mm and number of 2 scans achieves the highest shear strength of 24 MPa and presents an improvement of 1225% in shear strength. In addition, multi-scale simulations were conducted to effectively demonstrate the interfacial bonding behavior and damage process of Al single-lap-joint. The proposed method shows great potential in improvement of bonding performance.本研究探讨了如何在铝基材上设计和激光蚀刻表面微纹理,以显著提高粘合剂性能。研究人员设计并制作了具有不同图案的微结构。此外,还对激光蚀刻参数(如蚀刻功率、线间距和扫描次数)进行了深入研究。所获得的微结构具有极佳的亲水性,有利于粘合剂的渗透和微机械互锁的形成。与未蚀刻的试样相比,在测试铝单片接合处的剪切强度时,结果显示出很大的改善。就激光参数和纹理对剪切强度的影响而言,功率影响最大,其次是扫描次数,最后是线间距和纹理。采用 X 纹理设计的试样,在扫描空间为 0.2 毫米、扫描次数为 2 次、功率为 20 瓦的条件下进行蚀刻,其剪切强度最高,达到 24 兆帕,剪切强度提高了 1225%。此外,还进行了多尺度模拟,以有效证明铝单层接合的界面结合行为和破坏过程。所提出的方法在改善粘接性能方面显示出巨大的潜力。Achieving high strength friction lap spot joints of carbon fiber reinforced thermosetting composite to aluminum alloy with additional thermoplastic interlayerXue C., Han S.C., Jiang C.Y., Wu L.H., Wang Q.Z., Xue P., Ni D.R., Xiao B.L., Ma Z.Y.doi:10.1016/j.tws.2023.111239利用附加热塑性中间膜实现碳纤维增强热固性复合材料与铝合金的高强度摩擦搭接点接头The dissimilar materials of the 5182-aluminum alloy and continuous carbon fiber reinforced bismaleimide (CF-BMI) were joined by friction lap spot joining (FLSJ) directly and via the addition of the polyamide 6 (PA6) interlayer, and the effect of interlayer on the joining mechanism and the joint mechanical property was investigated. It was found that no effective joints were achieved by FLSJ directly, which was mainly attributed to the poor re-forming ability and liquidity of the thermosetting BMI, and its difficulty in reacting to metals. After the addition of the PA6 interlayer, the effective dissimilar joints were successfully realized by FLSJ. The maximum average tensile shear force of the joint reached 3.68 kN, with the average normal tensile shear strength of 20.9 MPa at the optimum parameter with the rotation rate of 2000rpm, dwell time of 7s, plunge depth of 0.7 mm and the PA6 interlayer of 0.3 mm. A new C-O-Al chemical bond was found at the interface of the PA6 interlayer and aluminum alloy, which was the result of the chemical reaction between the amide polar function of PA6 and surface oxide of aluminum alloy. The great increase in the joint strength by the addition of the PA6 interlayer was mainly attributed to the great reduction of the interface defects and the formation of the chemical bonding, as the result of the great improvement of the interface fluidity and chemical reaction ability of PA6. This study provides an effective way to achieve high strength metal/continuous carbon fiber reinforced thermosetting composite joints.通过摩擦搭接点接触(FLSJ)直接接合和添加聚酰胺 6(PA6)中间膜接合 5182-铝合金和连续碳纤维增强双马来酰亚胺(CF-BMI)异种材料,研究了中间膜对接合机理和接合力学性能的影响。研究发现,直接使用 FLSJ 无法实现有效接合,这主要是由于热固性 BMI 的再成型能力和流动性较差,且难以与金属发生反应。在添加 PA6 中间膜后,FLSJ 成功实现了有效的异种连接。在转速为 2000rpm、停留时间为 7s、插入深度为 0.7 mm、PA6 中间层为 0.3 mm 的最佳参数下,接头的最大平均拉伸剪切力达到 3.68 kN,平均法向拉伸剪切强度为 20.9 MPa。在 PA6 夹层和铝合金的界面上发现了新的 C-O-Al 化学键,这是 PA6 的酰胺极性官能团和铝合金的表面氧化物发生化学反应的结果。加入 PA6 中间膜后,接头强度大大提高,这主要是由于 PA6 的界面流动性和化学反应能力大大提高,从而大大减少了界面缺陷并形成了化学键。这项研究为实现高强度金属/连续碳纤维增强热固性复合材料接头提供了一种有效途径。Analytical and Finite Element Analyses on Axial Tensile Behaviour of Origami Bellows with Polygonal Cross-SectionZhang Xinyi, Karagiozova Dora, Lu Guoxing, Durandet Yvonne, Wang Shenghaidoi:10.1016/j.tws.2023.111234多边形截面折纸波纹管轴向拉伸行为的分析和有限元分析The mechanical behaviour and energy absorption (EA) of origami bellows with polygonal cross-sections under quasi-static axial tension were numerically and theoretically investigated. The finite element analysis results showed that the plateau force increased with the number of polygon sides N, leading to increases in the mean tensile force (P m) and SEA. Two types of basic deployment elements during the tensile process of hexagonal cross-section bellows were defined in two deployment modes, namely non-rigid deployment mode I and non-rigid deployment mode II. The bellows exhibiting deployment mode II had approximately 60% greater SEA and P m than those exhibiting mode I. Theoretical predictions of the mean tensile force for each mode were derived based on a rigid, perfectly plastic material with superfolding elements. The predicted results showed reasonable agreement with the finite element analysis results in terms of force–displacement history and mean tensile force. This work reveals the fundamental mechanics involved and can facilitate design of origami bellows with optimized geometric and material parameters for desired EA behaviour.对多边形截面折纸波纹管在准静态轴向拉力作用下的力学行为和能量吸收(EA)进行了数值和理论研究。有限元分析结果表明,高原力随多边形边数 N 的增加而增加,导致平均拉力(P m)和 SEA 的增加。六边形截面波纹管拉伸过程中的两种基本展开元素被定义为两种展开模式,即非刚性展开模式 I 和非刚性展开模式 II。根据带有超折叠元素的刚性完全塑性材料,对每种模式下的平均拉伸力进行了理论预测。在力-位移历史和平均拉伸力方面,预测结果与有限元分析结果显示出合理的一致性。这项研究揭示了其中涉及的基本力学原理,有助于设计具有优化几何参数和材料参数的折纸波纹管,以实现理想的 EA 行为。Low-velocity impact performance of orthogonal grid reinforced CFRP-foam sandwich structureLv Hangyu, Shi Shanshan, Chen Bingzhi, Liu Zipingdoi:10.1016/j.tws.2023.111236正交网格增强 CFRP 泡沫夹层结构的低速冲击性能Orthogonal grid structures, which are widely used in engineering, are incorporated into the foam to form the grid reinforced core. However, the impact resistance of this type of sandwich structure varies with position. In this paper, the low-velocity impact performance of orthogonal grid reinforced CFRP-foam sandwich structure at different positions was investigated. The drop hammer low-velocity impact tests were conducted at 30 J, 50 J, and 80 J energy for the intersection, rib, and center positions, respectively, and the impact resistance of the three positions was further compared with the impact data. The test results showed that the intersection and rib exhibited fiber fracture and delamination of CFRP face and grid, as well as foam crushing and cracking. The center position showed face perforation and foam crushing. At the same impact energy, the intersection position had the strongest impact resistance, with an initial stiffness about 18% higher than that of the rib, and their peak load per unit mass was higher than that of CFRP-foam sandwich panels, and the center was the weakest. In addition, numerical simulations were performed which were in good agreement with the tests, and the damage processes at different stages were discussed. The lightweight, high impact resistant sandwich structure proposed can provide a reference for structural design.工程中广泛使用的正交网格结构被纳入泡沫塑料中,形成网格加固夹芯。然而,这种夹层结构的抗冲击性能随位置的变化而变化。本文研究了正交网格增强 CFRP 泡沫夹层结构在不同位置的低速冲击性能。分别在交点、肋板和中心位置进行了能量为 30 J、50 J 和 80 J 的落锤低速冲击试验,并将三个位置的抗冲击性能与冲击数据进行了进一步比较。试验结果表明,交叉点和肋条位置出现纤维断裂、CFRP 面和网格分层以及泡沫破碎和开裂。中心位置则出现了面穿孔和泡沫破碎。在相同的冲击能量下,交叉点位置的抗冲击能力最强,其初始刚度比肋板高出约 18%,单位质量的峰值载荷也高于 CFRP 泡沫夹层板,而中心位置的抗冲击能力最弱。此外,还进行了数值模拟,结果与试验结果吻合,并讨论了不同阶段的破坏过程。所提出的轻质高抗冲击夹层结构可为结构设计提供参考。来源:复合材料力学仿真Composites FEM

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈