今日更新:International Journal of Solids and Structures 1 篇,Journal of the Mechanics and Physics of Solids 1 篇,Mechanics of Materials 1 篇,International Journal of Plasticity 1 篇,Thin-Walled Structures 1 篇
Deep homogenization networks for elastic heterogeneous materials with two- and three-dimensional periodicity
Wu Jiajun, Jiang Jindong, Chen Qiang, Chatzigeorgiou George, Meraghni Fodil
doi:10.1016/j.ijsolstr.2023.112521
二维和三维周期性弹性异质材料的深度均质网络
We present a deep learning framework that leverages computational homogenization expertise to predict the local stress field and homogenized moduli of heterogeneous materials with two- and three-dimensional periodicity, which is named physics-informed Deep Homogenization Networks (DHN). To this end, the displacement field of a repeating unit cell is expressed as two-scale expansion in terms of averaging and fluctuating contributions dependent on the global and local coordinates, respectively, under arbitrary multi-axial loading conditions. The latter is regarded as a mesh-free periodic domain estimated using fully connected neural network layers by minimizing residuals of Navier's displacement equations of anisotropic microstructured materials for specified macroscopic strains with the help of automatic differentiation. Enabled by the novel use of a periodic layer, the boundary conditions are encoded directly in the DHN architecture which ensures exact satisfaction of the periodicity conditions of displacements and tractions without introducing additional penalty terms. To verify the proposed model, the local field variables and homogenized moduli were examined for various composites against the finite-element technique. We also demonstrate the feasibility of the proposed framework for simulating unit cells with locally irregular fibers via transfer learning and find a significant enhancement in the accuracy of stress field recovery during neural network retraining.
我们提出了一种深度学习框架,利用计算均质化专业知识来预测具有二维和三维周期性的异质材料的局部应力场和均质化模量,并将其命名为物理信息深度均质网络(DHN)。为此,在任意多轴加载条件下,重复单元格的位移场被表示为双尺度扩展,即分别取决于全局坐标和局部坐标的平均贡献和波动贡献。在自动微分的帮助下,通过最小化各向异性微结构材料的纳维位移方程残差来估算指定的宏观应变,从而将后者视为使用全连接神经网络层估算的无网格周期域。通过新颖地使用周期层,边界条件被直接编码到 DHN 架构中,从而确保在不引入额外惩罚项的情况下准确满足位移和牵引的周期性条件。为了验证所提出的模型,我们使用有限元技术对各种复合材料的局部场变量和均质化模量进行了检验。我们还证明了通过迁移学习模拟具有局部不规则纤维的单元格的可行性,并发现在神经网络再训练过程中应力场恢复的准确性显著提高。
Effect of stacking sequence and interlayer toughening in +/−45 laminates
Nguyen Minh Hoang, Waas Anthony M.
doi:10.1016/j.jmps.2023.105458
+/-45层压板中堆叠顺序和层间增韧的影响
This paper investigates the combined effect of stacking sequence and interlayer toughening on the mechanical response and failure modes of ± 45 carbon fiber reinforced laminates, through experimental and numerical studies. Two material systems (T800H/3631, T800S/3900) and three stacking sequences (4 double plies, 4 plies, 8 plies) have been examined. Digital Image Correlation (DIC) and a high resolution edge camera were utilized to capture the intricate crack patterns in each ply. This paper also addresses the challenge of the nonlinear in-plane shear characterization of each lamina, and proposes an amendment to the existing ASTM standard to obtain the lamina shear strength and the in-situ non-linear response. The complex progression of micro-damage, matrix cracks and delamination as well as the final two-piece failure were captured by the enhanced semi-discrete damage modeling (eSD2M) framework. A parametric study was performed to reverse-engineer the most critical parameters such as interlayer strengths and toughnesses. The obtained values reflect the difference in the interlayer composition between the two material systems.
本文研究了堆叠顺序和层间增韧对 ± 45 碳纤维增强层压板的力学响应和破坏模式的综合影响。研究了两种材料系统(T800H/3631、T800S/3900)和三种堆叠顺序(4 层、4 层、8 层)。利用数字图像相关性(DIC)和高分辨率边缘照相机捕捉每层中错综复杂的裂纹图案。本文还探讨了对每层板进行非线性面内剪切表征的难题,并提出了对现有 ASTM 标准的修改建议,以获得层板剪切强度和原位非线性响应。增强型半离散损伤建模(ESD2M)框架捕捉到了微损伤、基体裂纹和分层的复杂发展过程以及最终的两片破坏。通过参数研究反向设计了最关键的参数,如层间强度和韧性。所获得的数值反映了两种材料系统层间成分的差异。
Combined mean-field and full-field homogenization of porous elasto-plastic materials and composites under arbitrary stress triaxialities
Naili Chiheb, Doghri Issam
doi:10.1016/j.mechmat.2023.104818
任意三轴应力条件下多孔弹塑性材料和复合材料的均质化和全场均质联合研究
A predictive micromechanical approach is proposed for porous materials where the unreinforced or reinforced matrix phase is elasto-plastic with hardening. The cavities can be spheres, long or short cylinders. The approach is based on an alternative microstructure made of elasto-plastic inhomogeneities embedded in a homogenized porous matrix phase, and the volume fractions are determined from a maximum packing argument. The effective properties of single hollow solids are computed with an energy-based approach coupled with full-field finite element (FE) analyses. Next, the alternative microstructures are homogenized with mean-field (MF) models. For reinforced porous materials, a two-level method is adopted, where the proposed approach is used at the lower level to obtain a fictitious homogenized matrix, in which reinforcements are embedded at the upper level. The present work is restricted to monotonic and proportional loadings and to the secant formulation of isotropic or transversely isotropic elasto-plasticity. However, no constitutive models are supposed or identified. The predictions were verified against reference full-field FE results on the actual microstructures in 3D and 2D plane strain or stress, for arbitrary stress triaxialities, and good agreement was found in all cases.
针对多孔材料提出了一种预测性微机械方法,在这种材料中,非增强或增强基体相是具有硬化的弹性塑性相。空腔可以是球体、长圆柱体或短圆柱体。该方法基于由嵌入均质化多孔基质相中的弹塑性非均质物构成的替代微结构,并通过最大堆积论证确定体积分数。通过基于能量的方法和全场有限元(FE)分析,计算了单个空心固体的有效特性。然后,用均值场 (MF) 模型对替代微结构进行均匀化处理。对于增强多孔材料,采用了两级方法,即在下级使用所建议的方法来获得虚构的均质化基体,在上级嵌入增强材料。目前的研究仅限于单调荷载和比例荷载,以及各向同性或横向各向同性弹塑性的正割公式。但是,没有假定或确定构成模型。在任意应力三轴性条件下,预测结果与实际微结构在三维和二维平面应变或应力条件下的全场有限元分析参考结果进行了验证,结果发现在所有情况下都具有良好的一致性。
A data-based derivation of the internal stress in the discrete-continuum transition regime of dislocation based plasticity
Lee Sing-Huei, Schulz Katrin
doi:10.1016/j.ijplas.2023.103771
基于数据的差排塑性离散-连续转变机制中的内应力推导
Effectively homogenizing microstructure heterogeneity within the coarse-graining volume is a long-lasting challenge in crystal plasticity theories. In this paper, we propose a data-based homogenization method that utilizes discrete dislocation dynamic simulations to derive the nearfield correction stress (back stress) for continuum models. This stress accounts for the effective stress field induced by microstructure heterogeneity under the length scale of a coarse-graining volume, providing a physically based homogenization approach. To bridge the gap between discrete and continuous regimes, we introduce two versions of the nearfield correction stress, as well as a criterion based on microstructure and numerical parameters to determine the discrete and continuous transition. Moreover, by analyzing the mathematical connections with the work-conjugated gradient plasticity theory, we further provide a physical explanation for the observed material length scale in the thermodynamically consistent back stress term. This work presents a novel methodology for effectively addressing microstructure heterogeneity and advancing the understanding and modeling of material behavior bridging different length scales.
有效地均化粗晶粒体积内的微观结构异质性是晶体塑性理论长期面临的挑战。在本文中,我们提出了一种基于数据的均质化方法,利用离散位错动态模拟来推导连续模型的近场校正应力(背应力)。该应力考虑了粗晶粒体积长度尺度下微结构异质性引起的有效应力场,提供了一种基于物理的均质化方法。为了弥合离散和连续状态之间的差距,我们引入了两个版本的近场修正应力,以及一个基于微观结构和数值参数的标准,以确定离散和连续的过渡。此外,通过分析与功-共轭梯度塑性理论的数学联系,我们进一步为热力学一致的背应力项中观察到的材料长度尺度提供了物理解释。这项研究提出了一种新颖的方法,可有效解决微结构异质性问题,并促进对弥合不同长度尺度的材料行为的理解和建模。
Experimental investigation on stiffened plates with non-continuous longitudinal stiffeners ending within the panel
Lukas Immo, Timmers Ralph, Ropele Melanie, Lang Robert
doi:10.1016/j.tws.2023.111260
带有非连续纵向加强筋的加劲板的实验研究
The present contribution investigates a construction method predominately applied in crane manufacturing known as non-continuous longitudinal stiffening. In this approach, the longitudinal stiffeners end within the panel, leaving a gap before reaching the transverse stiffener or the end of the girder. Current standardization is limited to conventional continuous stiffening. Therefore, the present study conducts an experimental test series of 50 close-to-reality scaled, non-continuously longitudinally stiffened plates subjected to uniform compression to characterize their structural behavior. The results are compared regarding different geometry parameters. One main conclusion is that the gap drastically governs the ultimate resistance, usually leading to a triangular-shaped buckling mode.
本论文研究的是一种主要应用于起重机制造的施工方法,即非连续纵向加劲。在这种方法中,纵向加劲件在面板内结束,在到达横向加劲件或大梁端部之前留有间隙。目前的标准化仅限于传统的连续加劲。因此,本研究对 50 块接近真实比例的非连续纵向加劲板进行了一系列实验测试,对其进行均匀压缩,以确定其结构行为特征。实验结果针对不同的几何参数进行了比较。一个主要结论是,间隙极大地影响了极限阻力,通常会导致三角形屈曲模式。