今日更新:Journal of the Mechanics and Physics of Solids 2 篇,Mechanics of Materials 1 篇
A unified strength criterion for two-dimensional materials via bond failure analysis
Zhang Guoqiang, Chen Yan, Yue Shengying, Zhang Yong-Wei, Qin Huasong, Liu Yilun
doi:10.1016/j.jmps.2023.105466
通过粘接破坏分析得出二维材料的统一强度标准
The family of two-dimensional (2D) materials, including graphene, hexagonal boron nitride, transition metal dichalcogenides, and others, exhibits a wide range of lattice structures and defect configurations, leading to complex deformation mechanisms and mechanical failure behaviors. However, there is currently no universally accepted criterion that accurately describes the mechanical failures of these materials. In this study, we aim to address this issue by introducing the concept of intrinsic bond strength, which is solely dependent on the local chemical environment of the bond and is independent of loading states, defect types, and fracture bonds. We demonstrate the existence of this intrinsic bond strength and propose a unified strength criterion that considers the balance between the intrinsic bond strength and local stress state for any 2D material. By employing this unified strength criterion, we are able to accurately predict the failure of various 2D materials with different types of defects, including voids, cracks, grain boundaries, and hydrogenation. This work resolves a long-standing issue in predicting the mechanical failure of 2D materials via bond failure analysis, and carries important implications for the design and development of 2D materials with enhanced mechanical properties.
二维(2D)材料家族,包括石墨烯、六方氮化硼、过渡金属二卤化物等,呈现出多种多样的晶格结构和缺陷构型,导致复杂的变形机制和机械失效行为。然而,目前还没有一个普遍接受的标准来准确描述这些材料的机械失效。在本研究中,我们旨在通过引入本征键强度的概念来解决这一问题,本征键强度完全取决于键的局部化学环境,与加载状态、缺陷类型和断裂键无关。我们证明了本征结合强度的存在,并提出了一种统一的强度准则,该准则考虑了任何二维材料的本征结合强度和局部应力状态之间的平衡。通过采用这一统一强度准则,我们能够准确预测具有不同类型缺陷(包括空隙、裂纹、晶界和氢化)的各种二维材料的失效。这项工作解决了长期以来通过键合失效分析预测二维材料力学失效的问题,对设计和开发具有更强力学性能的二维材料具有重要意义。
What are the “dispersive shear bands” on the surfaces of layered heterostructured materials?
Ma Huwen, Zhao Yanchun, Lyu Zhi, Wang Xue, Zhu Yuntian, Gao Yanfei
doi:10.1016/j.jmps.2023.105467
什么是层状异质结构材料表面的 "分散剪切带"?
Hetero-deformation-induced (HDI) strengthening mechanism has been well investigated in heterostructured materials including layered/gradient materials prepared by surface attrition or other processing techniques. While the roles played by the geometrically necessary dislocations (GNDs) and the forward/back stresses on the grain scale have been a focus in nearly all these studies, some latest works reveal the peculiar formation of “dispersive shear bands” or strain localizations on the surfaces of layered/gradient materials. Feature sizes of these “shear bands” are commensurate with the macroscopic sample size, but not on the microstructural length scales, thus excluding the HDI strengthening as the primary mechanism. In this work, using a sandwich structure as an illustrative example, we demonstrate that the origin of these shear bands be localized necking with intermediate wavelengths and inclined orientations, which are critically dictated by the hardening behavior of the constituent layers, the geometric parameters, and the initial morphological perturbations. The layered structure under tension may not neck with an infinite wavelength (i.e., the Considère mode), but neck at intermediate wavelengths which actually correspond to a much larger uniform ductility than the commonly observed Considère necking mode. The arrangements of these shear bands can be further classified as I, X, and W types. Findings in this work not only resolve the origin of recent unusual experimental observations, but also suggest an alternative way of understanding and improving the ductility in heterostructured materials.
异质形变诱导(HDI)强化机制已在异质结构材料中得到深入研究,包括通过表面损耗或其他加工技术制备的层状/梯度材料。几乎所有这些研究都重点关注了几何必要位错(GNDs)和晶粒尺度上的前向/后向应力所发挥的作用,而一些最新研究则揭示了层状/梯度材料表面 "分散剪切带 "或应变定位的奇特形成。这些 "剪切带 "的特征尺寸与宏观样品尺寸相称,但与微观结构长度尺度不符,因此排除了高密度互联强化作为主要机制的可能性。在这项工作中,我们以三明治结构为例,证明了这些剪切带的起源是具有中间波长和倾斜方向的局部颈缩,这主要由组成层的硬化行为、几何参数和初始形态扰动决定。张力作用下的层状结构可能不会以无穷大的波长(即康西代尔模式)出现缩颈,而是以中间波长出现缩颈,这实际上对应于比通常观察到的康西代尔缩颈模式大得多的均匀延展性。这些剪切带的排列可进一步分为 I、X 和 W 三种类型。这项工作的发现不仅解决了近期不寻常实验观测的起源问题,还为理解和改进异质结构材料的延展性提出了另一种方法。
4D local investigation of mechanical behavior of open-cell foams by enhanced morphological analysis and microstructure-adapted digital volume correlation for tribology applications
Lacaj E., Doumalin P., Bouyer J., Jolly P., Henry Y., Fatu A., Beaudoin A., Ennazii A.-E., Couderc B., King A.
doi:10.1016/j.mechmat.2023.104836
通过增强形态分析和微结构适配数字体积相关性对开孔泡沫的机械行为进行四维局部研究,以促进摩擦学应用
In ex-poro-hydrodynamic (XPHD) lubrication, fluid impregnated, open-cell elastomer foams constitute a composite material aiming to improve the load carrying and damping capacity of lubricated systems and to provide more environmentally sustainable solutions. The performance of XPHD-based devices depends on the interactions between solid and fluid phases, occurring and evolving simultaneously during dynamic compression of an imbibed foam. Even at normal regimes, the foam microstructure undergoes large deformations and is prone to strain concentrations which modify its local porosity and influence the mechanical behavior of the composite. In this context, this work focuses on the development of a systematic and accurate characterization technique for describing the main morphological changes happening under uniaxial compression of a high porosity dry open-cell polyurethane foam, by in-situ X-ray microtomography (μCT) testing. A combination of 3D image analysis and digital volume correlation (DVC) is considered to identify and trace the spatial and temporal location of key microstructural features at every loaded state. In this way, the detailed transformations of cells and pores obtained by this method are presented here to give further insight into the deformation mechanisms involved. Then, the advantages and the limits of the overall methodology in analyzing high porosity open-cell foams are regarded in terms of feature segmentation and measurement precision. Both a classic and a microstructure-adapted DVC are compared at their respective scales, and finally their sensibility to emphasize local strain heterogeneities is discussed.
在孔外流体动力(XPHD)润滑中,流体浸渍开孔弹性泡沫构成了一种复合材料,旨在提高润滑系统的承载能力和阻尼能力,并提供更具环境可持续性的解决方案。基于 XPHD 的设备的性能取决于固相和流体相之间的相互作用,这种相互作用在浸泡泡沫的动态压缩过程中同时发生和发展。即使在正常状态下,泡沫微观结构也会发生较大变形,并容易产生应变集中,从而改变局部孔隙率,影响复合材料的机械行为。在这种情况下,这项工作的重点是开发一种系统而精确的表征技术,通过原位 X 射线显微层析(μCT)测试,描述高孔隙率干法开孔聚氨酯泡沫在单轴压缩下发生的主要形态变化。三维图像分析和数字体积相关(DVC)相结合,可识别和追踪每个加载状态下关键微观结构特征的空间和时间位置。因此,本文介绍了该方法获得的细胞和孔隙的详细变化,以便进一步了解相关的变形机制。然后,从特征分割和测量精度的角度,探讨了分析高孔隙率开孔泡沫的整体方法的优势和局限性。比较了经典 DVC 和微结构适应 DVC 各自的尺度,最后讨论了它们对强调局部应变异质性的敏感性。