今日更新:Composite Structures 3 篇,Composites Part B: Engineering 1 篇
Mesoscopic damage characteristics of hydrophobicity-modified geopolymer composites under freezing-thawing cycles based on CT scanning
Zhong W.L., Qiu B., Zhang Y.H., Zhao X., Fan L.F.
doi:10.1016/j.compstruct.2023.117637
基于 CT 扫描的疏水性改性土工聚合物复合材料在冻融循环下的介观损伤特征
The mesoscopic damage characteristics of geopolymer under freezing-thawing (F-T) cycles affect its macroscopic physical and mechanical properties, which further influence the safety of geopolymer buildings. This paper presents a study on the mesoscopic damage characteristics of hydrophobicity-modified geopolymer composites (HM-GC) based on the CT scanning technique. The damage degree and damage distribution characteristics of geopolymer composites (GC) before and after hydrophobic modification were compared. The gradient distribution characteristics of damage caused by F-T cycles in HM-GC were further analyzed. The results show that the volumetric porosity of the GC is always larger than that of HM-GC under the same F-T cycle number, indicating the hydrophobic treatment can reduce the F-T cycle damage rate and damage degree. The results also show that the damage induced by F-T cycles in GC and HM-GC shows obvious spatial gradient characteristics. As the F-T cycle number increases, the average gradient coefficient of GC increases first and then decreases, while the average gradient coefficient of HM-GC increases first and then stabilizes. The hydrophobic treatment can reduce the gradient characteristics of the F-T cycle damage and improve the F-T durability of geopolymer composites.
土工聚合物在冻融循环(F-T)作用下的中观损伤特征会影响其宏观物理力学性能,从而进一步影响土工聚合物建筑的安全性。本文基于 CT 扫描技术对疏水改性土工聚合物复合材料(HM-GC)的中观损伤特征进行了研究。比较了疏水改性前后土工聚合物复合材料(GC)的损伤程度和损伤分布特征。进一步分析了 F-T 循环在 HM-GC 中造成的损伤梯度分布特征。结果表明,在相同的 F-T 循环次数下,GC 的体积孔隙率始终大于 HM-GC,这表明疏水处理可以降低 F-T 循环损伤率和损伤程度。结果还表明,F-T 循环在 GC 和 HM-GC 中诱发的损伤具有明显的空间梯度特征。随着 F-T 循环次数的增加,GC 的平均梯度系数先增大后减小,而 HM-GC 的平均梯度系数先增大后稳定。疏水处理可以降低 F-T 循环损伤的梯度特性,提高土工聚合物复合材料的 F-T 耐久性。
An interpretable machine learning model for predicting bond strength of CFRP-steel epoxy-bonded interface
Ke Lu, Qiu Mingdong, Chen Zheng, Zhou Jiale, Feng Zheng, Long Jiejie
doi:10.1016/j.compstruct.2023.117639
用于预测 CFRP-钢环氧树脂粘接界面粘接强度的可解释机器学习模型
This study develops an interpretable machine learning model for predicting the bond strength of CFRP-steel epoxy bonding interfaces and reveals key bond parameters. A total of 302 sets of experimental data were collected from the existing literature, including 16 influencing factors (i.e. the “features”) for the bond strength of the CFRP-steel bonded interface. Firstly, the sequential backward selection algorithms based on random forest (RF), maximum information coefficient (MIC), and distance coefficient (DC) were assessed. Then, Catboost and RF-based models were optimized and evaluated to determine the best prediction model. Finally, Shapley Additive Explanation (SHAP) was used to interpret the Catboost-based model. The results showed that the average Coefficient of Determination (R2) of the prediction for the test set by the Catboost and RF-based models was 95.5% and 91.5%, respectively, indicating the Catboost-based model has a higher prediction accuracy. The SHAP analysis indicates that the bond length, bond width, and the elastic modulus of the adhesive are the critical bonding parameters governing the bond strength of CFRP-steel epoxy-bonded interfaces. The Pareto diagram shows that the effective bond length is about 120 mm. This study provides valuable guidance for the design of bond performance and process optimization of CFRP-steel epoxy bonding interfaces.
本研究开发了一种可解释的机器学习模型,用于预测 CFRP-钢环氧树脂粘接界面的粘接强度,并揭示了关键的粘接参数。本研究从现有文献中收集了 302 组实验数据,其中包括 16 个 CFRP-钢粘接界面粘接强度的影响因素(即 "特征")。首先,评估了基于随机森林(RF)、最大信息系数(MIC)和距离系数(DC)的序列后向选择算法。然后,对基于 Catboost 和 RF 的模型进行了优化和评估,以确定最佳预测模型。最后,使用 Shapley Additive Explanation (SHAP) 对基于 Catboost 的模型进行解释。结果表明,基于 Catboost 和 RF 的模型对测试集预测的平均决定系数(R2)分别为 95.5% 和 91.5%,表明基于 Catboost 的模型具有更高的预测准确性。SHAP 分析表明,粘接长度、粘接宽度和粘接剂的弹性模量是影响 CFRP-钢环氧树脂粘接界面粘接强度的关键粘接参数。帕累托图显示,有效粘接长度约为 120 毫米。这项研究为 CFRP-钢环氧树脂粘接界面的粘接性能设计和工艺优化提供了宝贵的指导。
Bio-inspired study of stiffener arrangement in composite stiffened panels using a Voronoi diagram as an indicator
Asakawa Kenji, Hirano Yoshiyasu, Tan Kwek-Tze, Ogasawara Toshio
doi:10.1016/j.compstruct.2023.117640
以 Voronoi 图为指标的复合加劲板加劲件布置生物启发研究
Taking a biomimetic approach, this study introduces the use of a Voronoi diagram as an indicator of stiffener arrangement in stiffened composite panels. The locations of generator points that determine the shape of the Voronoi diagram are optimized for buckling problems under compression and shear load. An original optimization algorithm that combines the genetic algorithm and the finite element method is developed and implemented. The Voronoi diagram can also be used as an indicator for conventional, periodical stiffener shapes such as grid, lattice, honeycomb, and isogrid. We conducted parametric studies for periodical stiffener shapes, and demonstrated that these shapes can be designed using Voronoi diagrams. The results revealed that the optimized panel has a higher buckling load than that of conventional panels, and this methodology is effective for designing biomimetic stiffened CFRP panel structures.
本研究采用仿生方法,介绍了如何使用 Voronoi 图作为加劲复合板中加劲件布置的指标。针对压缩和剪切载荷下的屈曲问题,对决定 Voronoi 图形状的发生点位置进行了优化。开发并实施了一种结合遗传算法和有限元法的原创优化算法。Voronoi 图也可用作常规周期性加强筋形状的指标,如网格、格子、蜂窝和等格网。我们对周期性加强筋形状进行了参数研究,并证明这些形状可以使用 Voronoi 图进行设计。结果表明,优化后的面板比传统面板具有更高的屈曲载荷,这种方法对设计仿生加劲 CFRP 面板结构非常有效。
Improving mechanical performances at room and elevated temperatures of 3D printed polyether-ether-ketone composites by combining optimal short carbon fiber content and annealing treatment
Li Jia, Fu Yutong, Pi Wenli, Li Yuanqing, Fu Shaoyun
doi:10.1016/j.compositesb.2023.111067
通过优化短碳纤维含量和退火处理,提高 3D 打印聚醚醚酮复合材料在室温和高温下的机械性能
Development of high performance polyether-ether-ketone (PEEK) composites is of great significance for aerospace engineering application. The fused filament fabrication (FFF)-based 3D printing process is promising for manufacturing high performance short carbon fiber (SCF) reinforced PEEK composites. However, a comprehensive investigation of the combined effects of SCF content and annealing condition has not been conducted on the mechanical performances of SCF/PEEK composites; also, elevated temperature mechanical properties that are required for aerospace engineering have not been reported for 3D printed SCF/PEEK composites. This work develops a creative strategy that combines the optimal short carbon fiber (SCF) content with annealing treatment to achieve significant improvements in the mechanical properties both at room and elevated temperatures of FFF-3D printed SCF/PEEK composites. First, the influences of SCF content on the mechanical performances of 3D printed SCF/PEEK composites are studied to determine the optimal fiber content (5 wt%) for the best mechanical performances of non-annealed PEEK composites. Then, the effects of SCF content and annealing on room temperature and elevated temperature mechanical performances are examined for both PEEK and the 5 wt% SCF/PEEK composite. It is elucidated that the increase of interface strength and crystalline region as well as the reduction of residual stress by annealing are all responsible for the observed improvements in mechanical performances. This work presents a comprehensive study of 3D printed short fiber reinforced thermoplastics and serves as a valuable reference for the 3D printing of high-performance thermoplastic composites.
开发高性能聚醚醚酮(PEEK)复合材料对航空航天工程应用具有重要意义。基于熔融长丝制造(FFF)的三维打印工艺有望制造出高性能的短碳纤维(SCF)增强 PEEK 复合材料。然而,目前尚未对 SCF 含量和退火条件对 SCF/PEEK 复合材料机械性能的综合影响进行全面研究;此外,对于 3D 打印 SCF/PEEK 复合材料,航空航天工程所需的高温机械性能也未见报道。本研究开发了一种创新策略,将最佳短碳纤维(SCF)含量与退火处理相结合,从而显著改善了 FFF-3D 打印 SCF/PEEK 复合材料在室温和高温下的力学性能。首先,研究了 SCF 含量对 3D 打印 SCF/PEEK 复合材料机械性能的影响,以确定最佳纤维含量(5 wt%),从而使未退火的 PEEK 复合材料获得最佳机械性能。然后,研究了 SCF 含量和退火对 PEEK 和 5 wt% SCF/PEEK 复合材料室温和高温机械性能的影响。结果表明,界面强度和结晶区域的增加以及退火对残余应力的降低都是导致所观察到的机械性能改善的原因。该研究对三维打印短纤维增强热塑性塑料进行了全面研究,为高性能热塑性复合材料的三维打印提供了有价值的参考。