今日更新:Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 3 篇,Composites Science and Technology 1 篇
Deep-learning versus greyscale segmentation of voids in X-ray computed tomography images of filament-wound composites
Shailee Upadhyay, Abraham George Smith, Dirk Vandepitte, Stepan V. Lomov, Yentl Swolfs, Mahoor Mehdikhani
doi:10.1016/j.compositesa.2023.107937
丝状缠绕复合材料 X 射线计算机断层扫描图像中空洞的深度学习与灰度分割比较
Filament-wound composites (FWC) are prone to high void contents, with large and complex-shape voids. It is critical to characterise these voids accurately to understand their effect on part strength. The characterization depends on the accuracy of the analysis technique, for example X-ray computed tomography and the subsequent void segmentation. This paper compares conventional greyscale thresholding to deep-learning (DL) based segmentation. The processing steps for both techniques are discussed. The greyscale thresholding contains segmentation errors due to the simple one-parameter algorithm and the pre-processing operations required for segmentation. This reduces the accuracy of void characterisation. The DL-based segmentation is found to be more accurate for characterisation of void size, shape, and location. The processing-time and system requirements are discussed, helping to determine the suitable segmentation technique based on desired results.
缠绕丝状复合材料(FWC)的空隙含量高,空隙大且形状复杂。要了解这些空隙对部件强度的影响,准确表征这些空隙至关重要。表征取决于分析技术的准确性,例如 X 射线计算机断层扫描和随后的空隙分割。本文比较了传统灰度阈值法和基于深度学习(DL)的分割法。本文讨论了两种技术的处理步骤。由于采用简单的单参数算法和分割所需的预处理操作,灰度阈值法包含分割误差。这降低了空隙特征描述的准确性。基于 DL 的分割方法在描述空隙大小、形状和位置方面更为精确。讨论了处理时间和系统要求,有助于根据预期结果确定合适的分割技术。
Mode II and mode III delamination of carbon fiber/epoxy composite laminates subjected to a four-point bending mechanism
S.I.B. Syed Abdullah, S.K. Bokti, K.J. Wong, M. Johar, W.W.F. Chong, Y. Dong
doi:10.1016/j.compositesb.2023.111110
四点弯曲机制下碳纤维/环氧复合材料层压板的模式 II 和模式 III 分层
Accurate determination of mode III interlaminar fracture toughness is paramount in composite materials due to its critical role in edge delamination, which nonetheless remains a significant challenge encountered. As such, this study focused on the investigation of mode II and III interlaminar fracture behavior of carbon fiber (CF)/epoxy composite laminates using four-end notched flexure (4ENF) tests and four-point bending plate (4PBP) tests, respectively. In particular, a cohesive zone model was employed for the simulation of the delamination process via finite element analysis (FEA). The mode II fracture toughness of CF/epoxy composites was determined to be 1.41 N/mm in experimental work. Additionally, experimental data in relation to force-displacement curves were in good agreement with numerical simulation results, which validated this simulation approach to successfully capture the mechanical response of composite laminates. In a similar manner, mode III delamination fracture toughness for CF/epoxy composites was numerically estimated to be 2.1 N/mm. Microscopic analysis indicated shear cusps were observed in both mode II and III specimens, as opposed to existing flakes discovered in mode III specimens only. Overall, this research enlightens a simple and effective way to estimate pure mode III fracture toughness and corresponding delamination behavior with respect to crack initiation and propagation.
由于模式 III 层间断裂韧性在边缘分层中的关键作用,因此准确测定模式 III 层间断裂韧性在复合材料中至关重要,但这仍然是一项重大挑战。因此,本研究分别采用四端缺口弯曲(4ENF)试验和四点弯曲板(4PBP)试验,重点研究碳纤维(CF)/环氧复合材料层压板的模式 II 和模式 III 层间断裂行为。其中,采用内聚区模型通过有限元分析(FEA)模拟分层过程。在实验工作中,CF/环氧复合材料的模式 II 断裂韧性被确定为 1.41 N/mm。此外,与力-位移曲线相关的实验数据与数值模拟结果非常吻合,这验证了这种模拟方法能够成功捕捉复合材料层压板的机械响应。同样,通过数值估计,CF/环氧复合材料的模式 III 分层断裂韧性为 2.1 N/mm。显微分析表明,在模式 II 和模式 III 试样中都观察到了剪切尖角,而仅在模式 III 试样中发现了薄片。总之,这项研究为估算纯模式 III 断裂韧度以及与裂纹起始和扩展有关的相应分层行为提供了一种简单而有效的方法。
Graphite reinforced polymers for sealing geothermal wells
Sai Liu, Arash Dahi Taleghani, Maryam Tabatabaei
doi:10.1016/j.compositesb.2023.111121
用于密封地热井的石墨增强聚合物
The objective of this study is to develop high-temperature resistant polymers for sealing geothermal wells by reinforcing inexpensive rubber with surface-treated graphite particles. We respectively treated two types of graphite particles, small-size lamellar graphite (SFG15) and graphite nanoplatelets (GNP), with a mixture of sulfuric and nitric acids. Through surface treatment, carboxylic groups are shown to be formed on graphite surfaces, and their oxygen contents are considerable. Polymer nanocomposites were made by compounding treated graphite particles with ethylene propylene diene monomer (EPDM). Uniform dispersion of treated graphite within developed polymer nanocomposites was achieved. Direct heating of prepared EPDM nanocomposites shows that treated SFG15 and GNP both enhance the temperature resistance of EPDM by over 80 °C. Also, the addition of treated graphite to EPDM remarkably enhances its storage modulus. Among all additive types and concentrations, 3.0 wt.% of treated SFG15 performs the best in enhancing the storage modulus (by up to 215.83%) and reducing tan δ, namely the loss factor. Adding treated graphite significantly enhances the specific heat capacity of EPDM and remarkably increases the heat energy required to melt it. The onset degradation temperature of EPDM-SFG15 nanocomposites is 30 °C higher than that of plain EPDM. With these enhanced thermal and mechanical properties, the prepared nanocomposites are a promising candidate for the constituent polymer of seals applicable in geothermal wells.
本研究的目的是通过用表面处理过的石墨颗粒增强廉价橡胶,开发用于密封地热井的耐高温聚合物。我们分别用硫酸和硝酸混合物处理了两种石墨颗粒,即小尺寸片状石墨(SFG15)和石墨纳米片(GNP)。结果表明,通过表面处理,石墨表面形成了羧基,而且氧含量相当高。将处理过的石墨颗粒与乙丙橡胶(EPDM)单体复合制成了聚合物纳米复合材料。经过处理的石墨在开发的聚合物纳米复合材料中实现了均匀分散。直接加热制备的三元乙丙橡胶纳米复合材料表明,经过处理的 SFG15 和 GNP 均可将三元乙丙橡胶的耐温性提高 80 ℃ 以上。此外,在三元乙丙橡胶中添加经处理的石墨可显著提高其储存模量。在所有添加剂类型和浓度中,3.0 wt.% 的经处理 SFG15 在提高储存模量(最高达 215.83%)和降低 tan δ(即损耗因子)方面表现最佳。添加处理过的石墨可明显提高三元乙丙橡胶的比热容,并显著增加熔化三元乙丙橡胶所需的热能。EPDM-SFG15 纳米复合材料的起始降解温度比普通 EPDM 高 30 °C。由于这些热性能和机械性能的提高,所制备的纳米复合材料有望成为地热井密封件的组成聚合物。
1D higher-order theories for quasi-static progressive failure analysis of composites based on a full 3D Hashin orthotropic damage model
M. Trombini, M. Enea, M.R.T. Arruda, A. Pagani, M. Petrolo, E. Carrera
doi:10.1016/j.compositesb.2023.111120
基于全三维哈申正交破坏模型的复合材料准静态渐进破坏分析一维高阶理论
This work investigates the crack propagation in composites by adopting a novel full three-dimensional (3D) Hashin-based orthotropic damage model combined with higher-order one-dimensional (1D) finite elements based on the Carrera Unified Formulation (CUF). Previous literature has proven that CUF provides structural formulations with great accuracy and improved computational efficiency. Moreover, a Layer-Wise (LW) formulation can be implemented within the CUF framework, allowing an accurate description of the 3D stress state in composite laminate, representing crucial information for progressive failure analysis. A Newton–Raphson predictor–corrector algorithm is used for the numerical solution of classical case tests, i.e., compact tension and three-point bending tests. The obtained results are compared with experimental outcomes and with solutions from well-established 2D damage models and a 3D Abaqus numerical model, demonstrating the capability of the proposed method to efficiently capture both the failure load and shape of the crack pattern.
本研究采用了一种新颖的基于 Hashin 的全三维(3D)各向同性损伤模型,并结合了基于 Carrera Unified Formulation(CUF)的高阶一维(1D)有限元,对复合材料中的裂纹扩展进行了研究。以往的文献已经证明,CUF 提供的结构计算公式具有极高的精度和更高的计算效率。此外,在 CUF 框架内还可以实现分层(LW)计算,从而准确描述复合材料层压板的三维应力状态,这对于渐进失效分析至关重要。牛顿-拉斐森预测校正算法用于经典案例测试的数值求解,即紧凑拉伸和三点弯曲测试。所获得的结果与实验结果以及成熟的二维损伤模型和三维 Abaqus 数值模型的求解结果进行了比较,证明所提出的方法能够有效捕捉破坏载荷和裂纹形态。
In-situ lignin regeneration strategy to improve the interfacial combination, mechanical properties and stabilities of wood-plastic composites
Zhiqiang Qi, Hongzhen Cai, Fazhan Ren, Li Liu, Keyan Yang, Xiangsheng Han
doi:10.1016/j.compscitech.2023.110366
改善木塑复合材料界面结合、机械性能和稳定性的原位木质素再生策略
This work presented an in-situ lignin regeneration strategy to improve the interfacial combination among wood-plastic composites (WPCs) and realize synchronous improvements of their static/dynamic mechanical properties and stabilities. Taking corn stover (CS) as a model, the lignin in them were dissolved in deep eutectic solvents (DES) and regenerated in water, during which the lignin migrated from inside to surfaces of CS. Ascribing to the uniform loading of hydrophobic and supramolecular lignin on the surfaces of CS, their interfacial combination with high density polyethylene (HDPE) were optimized, and the resultant WPCs exhibited synchronous increases of static mechanical properties (maximal increases of tensile strength ∼4.42 %, tensile toughness ∼90.24 %, flexure strength ∼41.20 %, and impact strength ∼18.82 %), dynamic strengths and stabilities (e.g., −30 °C–60 °C, humidity, and UV aging). Moreover, the regenerated lignin on CS also facilitated their combination with functional components (e.g., carbon black), and exhibited a conductivity of ∼3.97 S/m with 20 wt% of carbon black. Thus, this work paved a green and efficient way to turn wood residues into composites with high mechanical strength, stabilities, and potential functionalities, which were promising to expanded their applications as structural and functional materials.
本研究提出了一种原位木质素再生策略,以改善木塑复合材料(WPC)之间的界面结合,实现其静态/动态力学性能和稳定性的同步改善。以玉米秸秆(CS)为模型,将其中的木质素溶解在深共晶溶剂(DES)中并在水中再生,在此过程中木质素从CS内部迁移到CS表面。由于疏水性木质素和超分子木质素在 CS 表面的均匀负载,它们与高密度聚乙烯(HDPE)的界面组合得到了优化,由此得到的木塑复合材料的静态机械性能同步提高(拉伸强度最大提高 4.42 %,拉伸韧度 ∼90.24 %,弯曲强度 ∼41.20 %,冲击强度 ∼18.82 %),动态强度和稳定性(例如:-30 °C-60 °C, 湿度, 温度和湿度)也同步提高、-30 °C-60 °C、湿度和紫外线老化)。此外,CS 上的再生木质素还促进了其与功能成分(如炭黑)的结合,在炭黑含量为 20 wt% 的情况下,导电率达到 3.97 S/m。因此,这项工作为将木材残渣转化为具有高机械强度、高稳定性和潜在功能性的复合材料铺平了一条绿色、高效的道路,有望拓展其作为结构和功能材料的应用。