今日更新:International Journal of Solids and Structures 1 篇,Thin-Walled Structures 1 篇
Wave propagation characteristics in a rotating soft cylinder
Yinnan Zhang, Kecheng Li, Congshan Liu, Haifei Zhan, Chaofeng Lü
doi:10.1016/j.ijsolstr.2023.112639
旋转软圆柱体中的波传播特性
Wave propagation characteristics in rotating cylindrical structures, which reflect the dynamic properties of the structures, play a crucial role in various applications. This paper systematically investigates the wave propagation characteristics in a rotating soft cylinder, based on the Neo-Hookean and Ogden soft material models. The finite deformation theory and the linear incremental theory are employed to solve the large deformation induced by rotation and the small perturbation caused by wave propagation. It is found that rotation changes the geometry size, induces the asymmetry of the forward and backward waves, and leads to the discontinuous frequency change. At large wave numbers, the effect of asymmetry can be neglected for a thin cylinder. However, for small wavenumbers, the effect of asymmetry is significant for both thin and thick cylinders. As the speed increases, the frequency will undergo a sudden and discontinuous change in both Neo-Hookean and Ogden models. In the Ogden model, the snap-through in frequency is observed, during which the dispersion curves will change dramatically. The results of this work will benefit the application of the rotating systems with soft rollers and wheels, and the frequency characteristics can be used in structural detection and signal generation.
旋转圆柱结构中的波传播特性反映了结构的动态特性,在各种应用中起着至关重要的作用。本文基于 Neo-Hookean 和 Ogden 软材料模型,系统地研究了旋转软圆柱体中的波传播特性。采用有限变形理论和线性增量理论求解旋转引起的大变形和波传播引起的小扰动。研究发现,旋转改变了几何尺寸,引起了前进波和后退波的不对称,并导致频率的不连续变化。在波数较大时,薄圆柱体的不对称影响可以忽略。然而,在小波数情况下,不对称对薄圆柱体和厚圆柱体的影响都很大。随着速度的增加,频率在新胡肯模型和奥格登模型中都会发生突然和不连续的变化。在奥格登模型中,频率会发生突变,其间频散曲线会发生剧烈变化。这项工作的结果将有利于带有软滚子和轮子的旋转系统的应用,其频率特性可用于结构检测和信号生成。
Shake table test and seismic fragility analysis of transmission tower-line system considering duration effect
Li Tian, Meng Yang, Juncai Liu, Zhen Ma, Junrong Gong, Haomiao Chen, Xianchao Luo
doi:10.1016/j.tws.2024.111584
考虑持续时间效应的振动台试验和输电塔线系统地震脆性分析
Although extensive attention has been devoted to the influence of ground motion duration on the seismic performance of various structures, the integration of the duration effect into the seismic analysis of transmission tower-line systems (TTLSs) has been rarely studied, leading to a lack of understanding regarding the relationship between the ground motion duration and the seismic response of TTLSs. This paper aims to quantify the duration effect on the structural performance and seismic fragility of a TTLS through shake table tests and numerical simulations. To achieve this goal, a reduced-scale experimental model of a TTLS is carefully designed and fabricated, and a group of ground motions with contrasting durations is chosen using a spectral matching method. Subsequently, shake table tests are conducted to examine the duration effect on the seismic responses of the TTLS. The recorded data indicates that long-duration ground motions (LDGMs) significantly amplify the seismic responses and have the potential to degrade the structural performance. Furthermore, a validated finite element model of the TTLS is employed to compute its nonlinear responses from elastic behavior to complete plasticity utilizing incremental dynamic analysis. Probabilistic assessments are also conducted to investigate the seismic fragility and loss of the TTLS. The findings reveal higher damage probabilities and more severe losses caused by LDGMs, emphasizing the importance of considering the duration effect in the seismic performance assessment of TTLSs. This investigation contributes to a meaningful exploration for reliably assessing the seismic capacity of TTLSs while accounting for the duration effects.
尽管地震动持续时间对各种结构抗震性能的影响已受到广泛关注,但将持续时间效应纳入输电塔线系统(TTLS)抗震分析的研究却很少,导致人们对地震动持续时间与 TTLS 地震响应之间的关系缺乏了解。本文旨在通过振动台试验和数值模拟,量化持续时间对 TTLS 结构性能和地震脆性的影响。为实现这一目标,我们精心设计并制作了一个缩小尺度的 TTLS 实验模型,并使用频谱匹配法选择了一组持续时间对比强烈的地面运动。随后,进行了振动台试验,以检验持续时间对 TTLS 地震响应的影响。记录的数据表明,长持续时间地震动(LDGMs)会显著放大地震响应,并有可能降低结构性能。此外,还采用了经过验证的 TTLS 有限元模型,利用增量动态分析计算其从弹性行为到完全塑性的非线性响应。还进行了概率评估,以研究 TTLS 的地震脆性和损失。研究结果表明,LDGMs 造成的破坏概率更高,损失更严重,强调了在 TTLS 地震性能评估中考虑持续时间效应的重要性。这项研究有助于为可靠评估 TTLS 的抗震能力同时考虑持续时间效应进行有意义的探索。