今日更新:International Journal of Solids and Structures 2 篇,Mechanics of Materials 1 篇,Thin-Walled Structures 1 篇
Higher-Order Shear Deformation Theory for Accurate Prediction of Vibration Behavior of Thick Piezoelectric Disks and Design of Efficient Surface Electrodes
Ming Ji, Jia-Jin Zhong, Yi-Chuang Wu
doi:10.1016/j.ijsolstr.2024.112669
厚压电片振动特性精确预测的高阶剪切变形理论及高效表面电极设计
A modified higher-order shear deformation plate theory (MHSDT) is proposed to predict the resonance frequencies and related mode shapes of piezoelectric disks of various thicknesses. The theory explicitly accounts for the effects of the electrical potential on the displacement of the disk. The equations of motion for the disk are derived using Hamilton's principle in conjunction with a variational approach. It is shown analytically that the distribution of the electrical field on the surface of the disk is quantitatively similar to the distribution of the sum of the total stresses within the disk. Thus, the deformation of the disk can be approximated directly from the stress distribution on the disk, thereby greatly simplifying the solution process. The validity of the proposed MHSDT is confirmed by comparing the solutions for the natural frequencies, displacement fields, and electric field distributions of the disk for various radius-to-thickness ratios and boundary conditions with those obtained using Reddy’s third-order plate theory and COMSOL finite element simulations, respectively. The results show that the solutions obtained from the MHSDT method are consistently closer to the exact solutions than those determined using Reddy’s third-order method. Finally, the linear relationship between the electric field and the flexural displacement of the disk is leveraged to design surface electrodes capable of exciting specific flexural mode shapes of the disk under a free boundary condition. The efficiency of the designed electrodes is experimentally demonstrated using an amplitude-fluctuation electronic speckle pattern interferometer (AF-ESPI).
提出了一种改进的高阶剪切变形板理论(MHSDT)来预测不同厚度压电片的共振频率和相关振型。这个理论清楚地说明了电势对圆盘位移的影响。圆盘的运动方程是用汉密尔顿原理结合变分法推导出来的。分析表明,圆盘表面电场的分布与圆盘内总应力之和的分布在数量上是相似的。这样,圆盘的变形可以直接由圆盘上的应力分布近似求得,从而大大简化了求解过程。通过将不同半径厚度比和边界条件下圆盘的固有频率、位移场和电场分布的解分别与Reddy三阶板理论和COMSOL有限元模拟的解进行比较,证实了所提MHSDT的有效性。结果表明,用MHSDT方法得到的解比用Reddy的三阶方法得到的解更接近精确解。最后,利用电场与磁盘弯曲位移之间的线性关系,设计了能够在自由边界条件下激发磁盘特定弯曲模态形状的表面电极。利用振幅波动电子散斑干涉仪(AF-ESPI)对所设计电极的效率进行了实验验证。
Meso-structural optimization design of multifarious and complex fabric rubber composite structure
Yifeng Dong, Yutong Fu, Daining Fang
doi:10.1016/j.ijsolstr.2024.112672
多种复杂织物橡胶复合材料结构的细观结构优化设计
Fabric clothes are widely used to toughen the fabric rubber composite structure due to their strong designability and flexibility. The diversity and complexity of the meso-structural forms of fabric clothes bring great challenges to the efficient design of meso-structures of fabric rubber composite structure. The current studies are difficult to design the fabric rubber composite structure with complex structural forms whatever at macroscale or mesoscale. In this paper, the multiscale optimization design method of fabric rubber composite structure is established. Initially, the anisotropic theoretical models of the textile fabric rubber composite and reticulated fabric rubber composite are proposed based on meso-structural forms of the textile fabric and reticulated fabric. Then, the multiscale optimization framework and optimization process of fabric rubber composite structure, as well as the calculation methods of constraints and optimization objectives are established. Finally, the optimal meso-structures of textile fabric and reticulated fabric obtained by three optimization algorithms are compared. The results show that the difference of optimal meso-structures obtained by the three optimization algorithms is mainly reflected in the reticulated fabric. It is expected that the multiscale optimization design method has important scientific guiding significance for the performance improvement of fabric rubber composite structure.
由于织物橡胶复合材料具有较强的可设计性和柔韧性,被广泛应用于织物服装的增韧。织物服装细观结构形式的多样性和复杂性给织物橡胶复合材料细观结构的高效设计带来了巨大的挑战。无论是宏观尺度还是中尺度,目前的研究都难以设计出结构形式复杂的织物橡胶复合材料结构。建立了织物橡胶复合材料结构的多尺度优化设计方法。首先,基于纺织织物和网状织物的细观结构形式,提出了纺织织物橡胶复合材料和网状织物橡胶复合材料的各向异性理论模型。然后,建立了织物橡胶复合材料结构的多尺度优化框架和优化流程,以及约束条件和优化目标的计算方法。最后,对三种优化算法得到的纺织织物和网状织物的最优细观结构进行了比较。结果表明,三种优化算法得到的最优细观结构的差异主要体现在网状结构上。期望该多尺度优化设计方法对织物橡胶复合材料结构的性能改进具有重要的科学指导意义。
Numerical simulations of ductile crack initiation and growth in a textured magnesium alloy
S. Arjun Sreedhar, R. Narasimhan
doi:10.1016/j.mechmat.2024.104929
织构镁合金塑性裂纹萌生与扩展的数值模拟
In this work, the mechanics of ductile fracture near a notch tip in a basal textured Mg alloy is investigated through crystal plasticity based finite element analysis. An array of circular voids ahead of the tip subjected to mode I, plane strain, small scale yielding conditions is modelled. The effect of plastic anisotropy is examined by considering two notch orientations and contrasting the results against an isotropic plastic solid. The notch and the line perpendicular to it are chosen parallel to the transverse and rolling directions (TD and RD) in the first orientation, and along normal direction (ND) and TD in the second orientation. The TD-RD and isotropic cases show void-by-void growth for low initial porosity, fv0, and simultaneous multiple void growth for high fv0. By contrast, the ND-TD orientation displays the former even at high fv0. This is attributed to slower porosity evolution with J for this case due to high macroscopic hardening in the voided cells caused by pyramidal <c+a> slip and tensile twinning. The predicted crack growth resistance curves are also strongly influenced by fv0 and notch orientation.
本研究通过基于晶体塑性的有限元分析,研究了基底纹理镁合金缺口尖端附近的韧性断裂力学。在模态 I、平面应变和小尺度屈服条件下,对尖端前方的圆形空隙阵列进行建模。通过考虑两个缺口方向,并将结果与各向同性的塑性实体进行对比,研究了塑性各向异性的影响。在第一种取向中,槽口和垂直于槽口的线平行于横向和滚动方向(TD 和 RD),在第二种取向中,槽口和垂直于槽口的线平行于法线方向(ND)和 TD。TD-RD 和各向同性情况在初始孔隙率 fv0 较低时表现为逐个空隙增长,而在 fv0 较高时则表现为同时多个空隙增长;相比之下,ND-TD 方向即使在 fv0 较高时也表现为前者。这归因于这种情况下孔隙率随 J 的变化较慢,原因是金字塔 <c+a> 滑动和拉伸孪生导致空隙细胞中的宏观硬化程度较高。预测的裂纹生长阻力曲线也受到 fv0 和缺口取向的强烈影响。
A multiscale modeling method with updatable ABD shells for laminated flexible solar arrays
Longlong Chen, Wujun Chen
doi:10.1016/j.tws.2024.111625
具有可更新ABD壳的层压柔性太阳能电池阵列多尺度建模方法
The flexible solar array is an innovative deployable system to provide electrical power for space stations, satellites, and other spacecrafts. Due to the advantages of lightweight, large area, and high power, it has received considerable attention and applications. However, the intricate multilayer configuration, nonlinear material behavior, and low stiffness characteristic of the array have made it always challenging to accurately predict the morphology and frequencies. This paper presents a numerical nonlinear multiscale method called PWL FE2 for large-scale flexible solar arrays. The proposed method is implemented in Abaqus with Python scripts and Micromechanics plugin. Its fundamental procedure is as follows: at microscale, the nonlinear constitutive model is piecewise linearly interpolated, followed by ABD stiffness and mass homogenizations of each segment; at macroscale, material properties of general ABD shells are updated based on section forces. Benchmark tests on substrate tension show that the error between PWL FE2 and direct numerical simulation (DNS) is less than 5%. The refined shell model with PWL FE2 algorithm proves to be computationally efficient and convergence-friendly for morphology and frequency analysis of the array. For the single array undergoing strong nonlinearity, the computational efficiency of PWL FE2 is nine times that of DNS. The out-of-plane displacement reaches up to 210 mm, and the differences in reaction forces and deformations between nonlinear and linear simulations exceed 20%. For the global array subjected to 84 N tensile loads, the array remains planar, and the first four modes are clustered around 0.2 Hz.
柔性太阳能阵列是一种创新的可展开系统,为空间站、卫星和其他航天器提供电力。由于其重量轻、面积大、功率大等优点,得到了相当大的重视和应用。然而,复杂的多层结构、非线性的材料特性和低刚度的阵列特性使得精确预测其形态和频率一直是一个挑战。本文提出了一种求解大型柔性太阳能电池阵的非线性多尺度数值方法PWL FE2。该方法在Abaqus中使用Python脚本和Micromechanics插件实现。其基本步骤是:在微观尺度上,对非线性本构模型进行分段线性插值,然后对各段进行ABD刚度和质量均匀化;在宏观尺度上,一般ABD壳体的材料性能是基于截面力进行更新的。基材张力的基准测试表明,PWL FE2与直接数值模拟(DNS)的误差小于5%。采用PWL FE2算法的改进壳层模型计算效率高,收敛性好,可用于阵列的形态和频率分析。对于单阵列强非线性,PWL FE2的计算效率是DNS的9倍。非线性模拟与线性模拟的反作用力和变形差异超过20%,面外位移达到210 mm。对于受84 N拉伸载荷的全局阵列,阵列保持平面,前四个模态聚集在0.2 Hz左右。