今日更新:Composite Structures 3 篇,Composites Part A: Applied Science and Manufacturing 1 篇,Composites Science and Technology 3 篇
Composite Structures
An analytical approach for characterizing the fracture behaviour of ultra-high-performance fibre reinforced concrete
Bineet Kumar, Awadhesh Sharma, Sonalisa Ray
doi:10.1016/j.compstruct.2024.117922
一种表征超高性能纤维增强混凝土断裂行为的分析方法
The application of ultra-high-performance fibre-reinforced concrete (UHPFRC) offers significant advantages in constructing durable and efficient structural elements due to its remarkable compressive and flexural strength and dense microstructure. However, accurately predicting the hardening/softening profile of UHPFRC in relation to post-cracking tensile behaviour poses challenges, particularly when considering the influence of specimen size. In this work, the post-cracking tensile behaviour has been characterized by considering beam specimens of varying sizes under centre point loading. The inverse analysis approach has been employed to extract relevant information. A polylinear tensile stress profile has been proposed to capture the different fracture mechanisms involved, and an analytical model has been developed to predict the relationship between stress and crack width in the post-cracking zone. Critical crack width and fracture process zone length have been calculated, revealing the substantial contributions of the micro-cracking and fibre-bridging zones to the cohesive zone development in UHPFRC. Furthermore, it has been observed that the microcracking zone diminishes as the specimen size increases, highlighting its significant role in the size effect observed in UHPFRC and similar materials. A modified size effect model has been proposed incorporating the influence of the microcracking zone observed in the UHPFRC composite.
The facile preparation of robust, thermally conductive, self-healable and recyclable silicone composite is still a major challenge, so an asymmetric dynamic crosslinking chain strategy is proposed herein. Due to the better synergy of dynamic covalent and non-covalent bonds, this crosslinked network designed increases the tensile strength of silicone elastomer by 3 times to 5.1 MP, compared to traditional symmetric crosslinking structures (1.7 MPa). Moreover, optimizing the size and content of thermally conductive fillers (Al2O3 and BN), the thermal conductivity of silicone composite reaches 2.9 W/mK, vitalizing the rapid heat conduction and dissipation. Moreover, the composite can be repeatedly self-healed and reprocessed, its tensile strength and thermal conductivity recover 95%. The composite can also be recycled into silicone matrix and fillers, and the recycled materials can be remolded into new composite, allowing the recycling of electronic devices. Therefore, this work opens new avenues for intelligent thermal management in electronic devices.
Effects of prestressing wire corrosion on the load response law and bearing capacity of PCCP
Penglong Zhao, Zheng Si, Lingzhi Huang, Yanlong Li
doi:10.1016/j.compstruct.2024.117933
预应力丝腐蚀对PCCP荷载响应规律及承载力的影响
The corrosion of prestressed steel wires plays a crucial role in the failure of prestressed concrete cylinder pipes (PCCP). To explore the load-bearing response of prestressed steel wire corroded PCCP and the impact of prestressed steel wire corrosion on the load-bearing capacity of PCCP, a high-precision finite element model of buried PCCP with prestressed steel wire corrosion was established, and a bearing test was conducted based on this model. The results show that the corrosion of prestressed steel wires has the greatest impact on the mortar protective layer and outer core concrete, and the corrosion point at the waist of the pipe is the most detrimental to the pipeline. In addition, as the degree of corrosion of the steel wire increases, the mortar protective layer and outer core concrete at the corrosion point first crack under the action of compressive stress and internal water pressure. Finally, it was verified that the constructed bearing capacity model of PCCP with different corrosion points had high accuracy and could be used to predict the bearing capacity of corroded pipelines. This article can provide theoretical support for the structural safety monitoring and repair of PCCP in service.
Composites Part A: Applied Science and Manufacturing
A Progressive micromechanical model for single-polymer composites and experimental validation on self-reinforced PA6-based composites
S.K. Jalali, G. Greco, D. Rigotti, A. Dorigato, H. Mirbaha, G. Fredi, M. Bertolla, S. Guerra, T. Battistini, A. Dal Moro, A. Pegoretti, N.M. Pugno
doi:10.1016/j.compositesa.2024.108042
单高分子复合材料的渐进细观力学模型及自增强pa6基复合材料的实验验证
The current paper proposes a novel analytical micromechanics model to progressively predict the mechanical behavior of composites reinforced by continuous or discontinuous aligned fibers considering the nonlinear mechanical behavior of components and statistical breakage of fiber bundles based on the Curtin model. The PA6-based Single polymer composites (SPCs) are selected and extensive sets of experimental measurements on 12 available PA6 fibers with adequate repetitions to find reliable statistical Weibull parameters are performed. In addition, 10 different PA6 matrix samples, polymerized with various dosages of additives and raw materials, are tested. A remarkable potential for enhancing both strength and toughness of neat PA6 matrix is demonstrated. Results reveal that using tough matrices with elongation in the order of PA6 fibers significantly enhances both strength and toughness of the SPC. The developed progressive micromechanics model provides an analytical parametric framework and a design guideline for developing new recyclable SPCs.
Investigation of the mode-I delamination behavior of Double-Double laminate carbon fiber reinforced composite
Menglin Zhao, Yang Zhao, Anyang Wang, Zhengping Chang, Jinyuan Zhang, Zhongqi Wang
doi:10.1016/j.compscitech.2024.110463
双层-双层层合碳纤维增强复合材料i型分层行为研究
Double-Double (DD) laminate, consisting of a repeat of a 4-ply sub-laminate [±Φ/±Ψ], has attracted widespread attention. The delamination damage of composites is always a significant failure problem in the application and a challenge for DD laminate. However, the mode-I delamination propagation behavior and fracture toughness of DD laminate with different interface angles were seldom reported. In this study, the interface angles of DD laminate were variable and could be classified into two types: Ψ/Φ and –Ψ/Φ interfaces. The effect of interface angle on the delamination propagation of DD laminate was explored using the double cantilever beam test. The delamination damage mechanisms of the above interfaces were revealed using macroscopic and microscopic characterization methods. The results showed that the initial fracture toughness values of laminates at the 0°/0°, 90°/0°, Ψ/Φ, and –Ψ/Φ interfaces were similar, and the steady-state fracture toughness values of laminates at the Ψ/Φ interfaces were at least 20 % higher than that of the –Ψ/Φ interfaces. Moreover, the maximum bridging stresses at Ψ/Φ and –Ψ/Φ interfaces were approximately equal, while the final failure displacements at Ψ/Φ interfaces were about 1.4–1.5 times than that at –Ψ/Φ interfaces.
Predicting the material behavior of recycled composites: Experimental analysis and deep learning hybrid approach
Yoon-Bo Shim, In Yong Lee, Young-Bin Park
doi:10.1016/j.compscitech.2024.110464
预测再生复合材料的材料行为:实验分析和深度学习混合方法
The end-of-life issues associated with composite materials have inspired extensive investigations into recycling methods. However, recycled composites cannot be widely used owing to their poor reliability, which is caused by the random and significant variations in their mechanical properties. This accordingly study proposed and demonstrated a method for predicting the mechanical behaviors and fracture mechanisms of recycled composites. First, recycled carbon-fiber-reinforced polymers were manufactured using mechanical recycling and compression molding. Surface images of the resulting specimens were captured and tension tests subsequently conducted to obtain their mechanical properties. The images and test results were used to train convolutional neural networks to predict three mechanical properties and investigate the resulting stress–strain curves. Furthermore, the specimen fracture mechanisms were investigated using the Gradient-weighted Class Activation Mapping technique. The results indicate that the proposed approach can be effectively applied to analyze the mechanical behaviors of recycled composites and provide insights into their fracture mechanisms under specific stress conditions. These capabilities are expected to increase the reliability and utility of recycled composite materials.
Assessing pseudo-ductile behavior of woven thermoplastic composites under tension and bending
Himayat Ullah, Rafi Ullah Khan, Vadim V. Silberschmidt
doi:10.1016/j.compscitech.2024.110465
织物热塑性复合材料在拉伸和弯曲作用下的伪延性评估
Most fiber-reinforced composites are inherently brittle and fail suddenly at low strains without yielding and energy-absorbing capability. Still, under some conditions, they can demonstrate ductile like response known as pseudo-ductility. To investigate such a response, experimental analysis of carbon- and glass-fabric reinforced thermoplastic polymer (C/GFRP) composites was performed in on- and off-axis orientations under service loading conditions of tension and bending. Tensile tests of off-axis specimens were conducted with a full-field strain-measurement digital image correlation (DIC) technique. Cyclic bending tests of on- and off-axis C/GFRP specimens were performed to assess their ductility and damage behavior. The tests revealed that on-axis CFRP laminates failed due to fracture of brittle carbon fibers under tension, monotonic and cyclic bending. The on-axis GFRP samples demonstrated a linear-elastic brittle response under tension but a visco-elasto-plastic nonlinear behavior under monotonic and cyclic bending with hysteresis and energy absorption. The off-axis C/GFRP specimens exhibited ductile behavior akin to metals, enduring high strains with permanent deformation before ultimate failure, and absorbing substantial amounts of energy. The pseudo-ductile response of off-axis CFRP specimens under bending can be attributed to plasticity and damage of matrix as well as fiber trellising, whereas in the on-axis GFRP specimens, it is primarily due to visco-elasto-plastic behavior of glass fibers and the TPU matrix. It is concluded that material's response can be tailored for stiffness, strength and ductility for specific applications.