首页/文章/ 详情

【新文速递】2024年2月6日固体力学SCI期刊最新文章

20天前浏览524

 

今日更新:International Journal of Plasticity 1 篇,Thin-Walled Structures 1 篇

International Journal of Plasticity

Tailoring the adiabatic shear susceptibility of pure tungsten via texture evolution

Xiukai Kan, Jianguo Li, Jingui Zhong, Tao Suo

doi:10.1016/j.ijplas.2024.103909

通过纹理演变调整纯钨的绝热剪切感应性

Pure tungsten (W) is generally believed to be a preferred alternative material for kinetic penetrators once a “self-sharpening” effect can be realized by inducing adiabatic shear failure during high-speed impact. However, it is still a major challenge to trigger adiabatic shear bands (ASBs) in pure W with low ductility. In this work, we reported an improved adiabatic shear susceptibility of pure W by controlling the texture evolution during the pre-rolling process. As the rolling strain increased, the texture components and intensity underwent crucial variations to facilitate the appearance of ASBs. For comparative studies, we investigated the dynamic behavior of three kinds of W samples with different microstructural features at a wide range of temperatures (298K∼1473K) via SHPB system, including coarse-grained W (CGW), as-rolled W samples to the thickness reductions of 75% (75W) and 80% (80W). The experimental results revealed a transition of failure behavior from typical brittle fracture to adiabatic shear instability under uniaxial dynamic compression. Of particular interest was that although 75W and 80W exhibited almost the same mechanical properties after the similar rolling reductions, their dynamic instability behaviors differed remarkably with different spatial distributions of texture components. In the as-rolled 75W, two dominant texture components of {001}<110> and {111}<110> were alternate to form fully spaced layers. Under uniaxial compression, the {111}<110> “hard orientation layers” became the obstacles to the propagation of ASBs. Fortunately, in 80W specimens the different {001}<110> “soft orientation layers” were interconnected by the “soft bricks” of the same orientation, which provided pathways for the expansion of shear localization and ultimately the triggering of ASBs. Through subsequent crystal plasticity finite element (CPFEM) simulations, we further verified the effect of orientation distributions on the shear localization and thoroughly explained the formation mechanism of ASBs in the highly textured refractory metal. This may provide guidance for producing advanced materials for certain practical applications.

一般认为,一旦在高速撞击过程中诱发绝热剪切破坏,从而实现 "自锐化 "效果,纯钨(W)就会成为动能穿甲弹的首选替代材料。然而,在延展性较低的纯 W 中引发绝热剪切带(ASB)仍然是一个重大挑战。在这项工作中,我们报告了通过控制预轧过程中的纹理演变来改善纯 W 的绝热剪切敏感性。随着轧制应变的增加,纹理成分和强度发生了重要变化,从而促进了 ASB 的出现。为了进行比较研究,我们通过 SHPB 系统研究了三种具有不同微观结构特征的 W 样品在宽温度范围(298K∼1473K)下的动态行为,包括粗晶粒 W(CGW)、厚度减少 75% (75W)和 80% (80W)的轧制 W 样品。实验结果表明,在单轴动态压缩下,破坏行为从典型的脆性断裂过渡到绝热剪切不稳定性。特别值得注意的是,虽然 75W 和 80W 在经过类似的轧制减薄后表现出几乎相同的机械性能,但它们的动态失稳行为却因纹理成分的空间分布不同而存在显著差异。在轧制后的 75W 中,{001}<110> 和 {111}<110> 两种主要纹理成分交替形成完全间隔的层。在单轴压缩下,{111}<110>"硬取向层 "成为 ASB 传播的障碍。幸运的是,在 80W 试样中,不同的{001}<110>"软取向层 "由相同取向的 "软砖 "相互连接,这为剪切定位的扩展提供了途径,并最终引发了 ASB。通过随后的晶体塑性有限元(CPFEM)模拟,我们进一步验证了取向分布对剪切定位的影响,并深入解释了高纹理难熔金属中 ASB 的形成机制。这为生产某些实际应用的先进材料提供了指导。


Thin-Walled Structures

Mechanics of a thin-walled segmented torus snap fit

Xiao-Lin Guo, Bo-Hua Sun

doi:10.1016/j.tws.2024.111676

薄壁分段环形扣合的力学原理

The snap fit is a commonly used jointing/connention mechanism because it is simple and reusable, and its easy installation and difficult removal are the result of the coordinated interaction between friction, geometric shape, and elasticity. This paper presents a detailed study on the assembly/disassembly forces of thin-walled torus snap-fit through finite element simulation, experimental testing, and data fitting of approximate analytical solutions. The research reveals that the non-zero Gaussian curvature of the torus has a significant impact on the mechanical performance of the torus snap fit. The findings in this study are of great significance for future design of high-performance structural connections.

卡合是一种常用的接合/连接机构,因为它简单且可重复使用,其易安装和难拆卸是摩擦力、几何形状和弹性之间协调作用的结果。本文通过有限元仿真、实验测试和近似分析解的数据拟合,对薄壁环形卡接的装配/拆卸力进行了详细研究。研究发现,环的非零高斯曲率对环形卡接件的机械性能有重大影响。本研究的发现对未来高性能结构连接的设计具有重要意义。



来源:复合材料力学仿真Composites FEM
ACTMechanicalSystem断裂UG材料控制InVEST装配
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-11-06
最近编辑:20天前
Tansu
签名征集中
获赞 5粉丝 0文章 776课程 0
点赞
收藏
作者推荐

【新文速递】2024年2月6日复合材料SCI期刊最新文章

今日更新:Composites Part B: Engineering 1 篇Composites Part B: EngineeringAn ultra-broadband biomimetic microwave blackbody integrating superior mechanical properties inspired by lepidopteran wing scalesShuibin Chen, Jincheng Han, Xianhe Cheng, Qigang Handoi:10.1016/j.compositesb.2024.111279 超宽带仿生微波黑体,受鳞翅目翼鳞启发,集成了卓越的机械特性Effective absorption bandwidth (EAB) and mechanical properties of microwave-absorbing materials (MAMs) together determine the radar stealth performance of weaponry, which is the survival guarantee of weaponry in the battlefield. Unfortunately, limited by conventional structures, current MAMs can hardly meet the requirements of EAB (−10 dB) &gt; 20 GHz and flexural strength &gt;100 MPa simultaneously. Here, an ultra-broadband biomimetic microwave blackbody (BMB) with superior mechanical properties inspired by the optical structures of lepidopteran wing scales is designed and fabricated. In fact, the broadband absorption is mainly attributed to impedance matching of the quasi-grid-like biomimetic structure on the surface and scattering enhancement of the quasi-honeycomb-like biomimetic structure at the bottom. Notably, the BMB achieves an EAB (−10 dB) of 37.8 GHz (2.8–40 GHz), covering 97.8% of the S-Ka band. Besides, the BMB exhibits stable broadband absorption at an incidence angle of 0°–40°. More importantly, the BMB has a flexural strength of 229.8 MPa and a high damage tolerance, due to the reinforcement of basalt fiber and the “T” shaped cross-section. This study provides a novel inspiration and feasible approach for the structure-function integration of MAMs and would enable a wide range of radar stealth and electromagnetic shielding applications.微波吸收材料(MAM)的有效吸收带宽(EAB)和机械性能共同决定了武器装备的雷达隐身性能,是武器装备在战场上的生存保障。遗憾的是,受限于传统结构,目前的微波吸收材料很难同时满足 EAB (-10 dB) &gt; 20 GHz 和抗弯强度 &gt;100 MPa 的要求。在此,我们从鳞翅目昆虫翼鳞的光学结构中汲取灵感,设计并制造了一种具有优异机械性能的超宽带仿生微波黑体(BMB)。事实上,宽带吸收主要归功于表面准网格状仿生结构的阻抗匹配和底部准蜂窝状仿生结构的散射增强。值得注意的是,BMB 的 EAB(-10 dB)达到 37.8 GHz(2.8-40 GHz),覆盖了 97.8% 的 S-Ka 波段。此外,BMB 在入射角为 0°-40° 时表现出稳定的宽带吸收。更重要的是,由于采用了玄武岩纤维加固和 &quot;T &quot;形截面,BMB 的抗弯强度达到 229.8 兆帕,并且具有很高的抗损坏能力。这项研究为 MAM 的结构-功能集成提供了一种新的灵感和可行的方法,并将使雷达隐身和电磁屏蔽得到广泛应用。来源:复合材料力学仿真Composites FEM

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈