首页/文章/ 详情

【新文速递】2024年2月13日复合材料SCI期刊最新文章

3天前浏览78

   

今日更新:Composites Science and Technology 2 篇

Composites Science and Technology

Electrostatically self-assembled three-dimensional conductive network for highly sensitive and reliable skin-like strain sensor

Shengkai Li, Jian Tang, Yudong Liu, Jing Hua, Jinhui Liu

doi:10.1016/j.compscitech.2024.110493

 

静电自组装三维导电网络,用于制造高灵敏度、高可靠性的类肤应变传感器

In recent years, flexible strain sensors have garnered significant attention in industrial manufacturing and daily life. Sensitivity and reliability are two crucial characteristics of flexible strain sensors in practical applications, and they depend on the development of the sensor's internal conductive network. However, the aggregation phenomenon of conductive fillers in the elastic matrix has a serious impact on the construction of a developed conductive network. In this work, we have designed electropositive amino-functionalized carbon nanotubes (CNTs-p) based on the electrostatic self-assembly of electronegative MXene in the aqueous phase. Compared to the use of surfactants, the electrical modulation of carbon nanotubes through chemical bonding modification is more robust and the electrostatic self-assembly with MXene is more stable. CNTs-p and MXene were self-assembled by electrostatic attraction in butyl latex and uniformly dispersed in the latex. Following demulsification, the polymer composite film (MXene&CNTs-p/IIR) with a three-dimensional conductive network was obtained. The skin-like strain sensor, which utilizes the conductive composite film, demonstrates high sensitivity (gauge factor (GF) = 35137 that is among the highest values for the reported strain sensor), remarkable reliability (The signal monitoring capability remains after 15000 cycles), and excellent responsiveness (62 ms). Additionally, the skin-like strain sensor boasts a wide detection range (0–431%) and unprecedented stability, enabling strain sensing functionality in a wide temperature range of -10—100 °C, as well as strong acid (pH = 1) and strong alkali (pH = 11) environment. The preparation of MXene&CNTs-p/IIR provides a safe, environmentally friendly and effective method for improving the sensitivity and reliability of flexible sensors in wearable intelligent electronics and health detection.

近年来,柔性应变传感器在工业制造和日常生活中备受关注。灵敏度和可靠性是柔性应变传感器在实际应用中的两个关键特性,而这两个特性取决于传感器内部导电网络的发展。然而,导电填料在弹性基体中的聚集现象严重影响了导电网络的构建。在这项工作中,我们基于电负性 MXene 在水相中的静电自组装,设计出了电正性氨基功能化碳纳米管(CNTs-p)。与使用表面活性剂相比,通过化学键修饰对碳纳米管进行电学调制的效果更强,与 MXene 的静电自组装也更稳定。CNTs-p 和 MXene 通过静电吸引在丁基胶乳中自组装,并均匀地分散在胶乳中。破乳后,得到了具有三维导电网络的聚合物复合薄膜(MXene&CNTs-p/IIR)。利用该导电复合薄膜制成的类肤应变传感器具有高灵敏度(测量系数 (GF) = 35137,是目前已报道的应变传感器中最高值之一)、卓越的可靠性(15000 次循环后仍能保持信号监测能力)和出色的响应速度(62 毫秒)。此外,这种类似皮肤的应变传感器还具有很宽的检测范围(0-431%)和前所未有的稳定性,可在 -10-100 °C 的宽温度范围以及强酸(pH = 1)和强碱(pH = 11)环境中实现应变传感功能。MXene&CNTs-p/IIR 的制备为提高可穿戴智能电子产品和健康检测领域柔性传感器的灵敏度和可靠性提供了一种安全、环保和有效的方法。


Construction of micro-nano hybrid structure based on carbon nanotube whisker and alumina for thermally conductive yet electrically insulating silicone rubber composites

Xiaowang Ji, Zhaoyu Lu, Junyan Wang, Neng Ye, Huan Zhang, Letian Zhou, Jingchao Li, Yonglai Lu

doi:10.1016/j.compscitech.2024.110495

 

构建基于碳纳米管晶须和氧化铝的微纳混合结构,用于导热和绝缘硅橡胶复合材料

High-performance electronics urgently need more effective thermally conductive rubber composites to solve interfacial heat transfer problems in the thermal management systems. Tiny amounts nanocarbon materials (NCM) can significantly improve the thermal conductivity of conventional ceramic-filled rubber composites, but the volume exclusion effect of micrometer ceramic fillers makes NCM highly susceptible to the formation of the conductive pathways, which inevitably leads to the substantial decrease in the volume resistivity of the materials, posing a safety hazard, such as short circuits, to electronic devices. Here, we report an electrostatic self-assembly method to prepare CNW@n-Al2O3 hybrids by loading nano-alumina (n-Al2O3) onto carbon nanotube whiskers (CNW) and co-filling them with micrometer alumina (m-Al2O3) to silicone rubber, constructing a micro-nano-multi-level hybrid network structure, which can fully utilize the high thermal conductivity while shielding the electrical conductivity of CNW. The resulting composite filled with 2 phr of CNW@n-Al2O3 exhibits a significantly enhanced thermal conductivity of 1.137 W/(m·K) and a high volume resistance of 1.323 × 109 Ω cm, and is proved to be used as an excellent thermal interface material to assist the heat dissipation of the microelectronic chip. This study provides a facile and effective strategy for the design of thermally conductive yet electrically insulating rubber composites filled with CNW, which shows a bright application prospect in the thermal management of high-performance electronic devices.

高性能电子产品迫切需要更有效的导热橡胶复合材料来解决热管理系统中的界面传热问题。微量纳米碳材料(NCM)可显著提高传统陶瓷填充橡胶复合材料的导热性能,但微米级陶瓷填料的体积排斥效应使 NCM 极易形成导电通路,从而不可避免地导致材料的体积电阻率大幅下降,给电子设备带来短路等安全隐患。在此,我们报告了一种制备 CNW@n-Al2O3 混合材料的静电自组装方法,即在碳纳米管晶须(CNW)上负载纳米氧化铝(n-Al2O3),并在硅橡胶中共同填充微米氧化铝(m-Al2O3),构建微纳多层次混合网络结构,从而在屏蔽 CNW 导电性的同时充分利用其高热传导性。填充了 2 phr 的 CNW@n-Al2O3 的复合材料的热导率显著提高,达到 1.137 W/(m-K),体积电阻高达 1.323 × 109 Ω cm,可用作优良的热界面材料,帮助微电子芯片散热。该研究为设计填充了氯化萘的导热绝缘橡胶复合材料提供了一种简便有效的策略,在高性能电子设备的热管理方面具有广阔的应用前景。



来源:复合材料力学仿真Composites FEM
ACTSystem复合材料化学电子ADSUG芯片UM材料
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-11-06
最近编辑:3天前
Tansu
签名征集中
获赞 3粉丝 0文章 351课程 0
点赞
收藏
作者推荐

【新文速递】2024年2月16日复合材料SCI期刊最新文章

今日更新:Composite Structures 1 篇,Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 1 篇,Composites Science and Technology 1 篇Composite Structures3D printing of FRP grid and bar reinforcement for reinforced concrete plates: Development and effectivenessJun-Jie Zeng, Zi-Tong Yan, Yuan-Yuan Jiang, Pei-Lin Lidoi:10.1016/j.compstruct.2024.117946用于钢筋混凝土板的 FRP 网格和钢筋的 3D 打印:开发与效果3D printed concrete has become increasing popular in research and industry communities, while it faces a lack of effective internal reinforcement. Fiber-reinforced polymer (FRP) reinforcement, which has been used widely as reinforcement for concrete structures, has also been adopted to enhance the performance of 3D printed concrete structures. However, conventional FRP manufacturing processes such as pultrusion does not allow on-site forming of the products, leading to difficulties in construction. This paper aims to solve the above issues by developing a novel form of 3D printed continuous fiber reinforced thermoplastic polymers (CFRTPs) reinforcement for 3D printed concrete structures. An experimental program on tensile behavior of 3D printed CFRTP bars and grids was conducted. Then the CFRTP reinforcement was used for 3D printed high-performance concrete to explore the effectiveness of the reinforcement. Twenty-two 3D printed concrete plates were tested to explore the effects of the loading direction and fabrication type on the flexural behavior of FRP reinforced high-performance concrete plates. Results show that the performance of the 3D printed HPC plates can be considerably enhanced owning to the FRP reinforcement and the CFRTP reinforcement are comparable to conventional FRP reinforcement with similar dimensions. This study identifies further research needs on CFRTP reinforcement for construction and will pave the way for studies on 3D printed reinforced concrete structures with both concrete and FRP reinforcement being printed simultaneously.3D 打印混凝土在研究和工业界越来越受欢迎,但它却面临着缺乏有效内部加固的问题。纤维增强聚合物(FRP)加固材料已被广泛用作混凝土结构的加固材料,也被用于提高 3D 打印混凝土结构的性能。然而,拉挤等传统 FRP 制造工艺无法实现产品的现场成型,导致施工困难。本文旨在通过为 3D 打印混凝土结构开发一种新型的 3D 打印连续纤维增强热塑性聚合物(CFRTPs)加固形式来解决上述问题。本文对 3D 打印 CFRTP 钢筋和网格的拉伸行为进行了实验。然后,将 CFRTP 加固材料用于 3D 打印高性能混凝土,以探索加固材料的有效性。测试了 22 块 3D 打印混凝土板,以探索加载方向和制造类型对 FRP 加固高性能混凝土板抗弯行为的影响。结果表明,由于使用了玻璃钢加固材料,3D 打印高性能混凝土板的性能大大提高,而且 CFRTP 加固材料的性能与尺寸相似的传统玻璃钢加固材料相当。这项研究确定了建筑用 CFRTP 加固的进一步研究需求,并将为同时打印混凝土和 FRP 加固的 3D 打印钢筋混凝土结构的研究铺平道路。Composites Part A: Applied Science and ManufacturingFrom mixed to hydrodynamic regime in lubricated sliding of carbon fiber towsNoël Brunetière, Kiran Bhantrakuppe Narayanappa, Olga Smerdovadoi:10.1016/j.compositesa.2024.108088碳纤维丝束润滑滑动中从混合到流体力学机制的变化Carbon fiber tows are used as reinforcement material in composite elements. To ensure mechanical integrity of the composite structure, it is important to ensure a good positioning of the carbon fibers in the mold during the manufacturing process. The positioning of the carbon fiber tows depends greatly on the friction with the mold. In the present paper, the friction between a carbon tow placed on a cylindrical pin rubbing against a rotating glass disk is experimentally studied in both dry and resin-lubricated conditions on a dedicated tribometer. The tests are performed for different loading levels and sliding speeds. The results are compared to numerical simulations taking into account contact mechanics and lubrication. The tows are modeled using a simple elastic foundation approach coupled with the Reynolds equation when the resin flow is considered. It appears that the impact of the deformability of the tow on its frictional behaviour is significant. It conditions the transition between mixed and hydrodynamic lubrication regimes.碳纤维丝束在复合材料中用作加固材料。为了确保复合材料结构的机械完整性,在制造过程中必须确保碳纤维在模具中的良好定位。碳纤维丝束的定位在很大程度上取决于与模具的摩擦力。本文在专用摩擦磨损试验机上,对置于圆柱销上的碳纤维丝束与旋转玻璃盘在干燥和树脂润滑条件下的摩擦情况进行了实验研究。试验针对不同的负载水平和滑动速度进行。试验结果与考虑了接触力学和润滑的数值模拟结果进行了比较。在考虑树脂流动时,使用简单的弹性基础方法和雷诺方程对拖曳进行建模。结果表明,丝束的变形能力对其摩擦行为的影响很大。它是混合润滑和流体动力润滑状态之间过渡的条件。Composites Part B: EngineeringSynthesis of conducting polymer intercalated sodium vanadate nanofiber composites as active materials for aqueous zinc-ion batteries and NH3 gas sensors at room temperatureSe Hun Lee, Juyeon Han, Ok Sung Jeon, Yongyeol Park, Dongpyo Hong, Ali Mirzaei, Jichang Kim, Min Kyoon Shin, Young Joon Yoo, Myung Sik Choi, Jeeyoung Yoo, Sang Yoon Parkdoi:10.1016/j.compositesb.2024.111305 在室温下合成导电聚合物插层钒酸钠纳米纤维复合材料,作为锌离子水电池和 NH3 气体传感器的活性材料Among the key technologies required for building industrial safety systems is portable integrated safety devices based on gas sensors and rechargeable batteries. In preparation for such integrated devices, this study focuses on the synthesis of sodium vanadate nanofibers (SVNF) and poly(3,4-ethylene dioxythiophene) (PEDOT) intercalated SVNF (E-SVNF) composites by a simple sonochemical approach for room temperature NH3 gas sensing and zinc ion battery (ZIB) studies. Applying E-SVNF to ZIBs resulted in superior rate capability, with a capacity of 192.13 mAh g−1 at 15 A g−1. Furthermore, they demonstrated long-term cycling stability, maintaining 83.47% of their capacity at 15 A g−1 even after 3,000 cycles. The gas sensor incorporating E-SVNF showcased a high response and excellent selectivity, even at room temperature, with response values of 1.059 for 10 ppm and 1.113 for 70 ppm of NH3 gas. These remarkable enhancements in the electrochemical performance of ZIBs and the gas sensor are attributed to the insertion of conductive polymers between SVNF layers. This resulted in improved electrical conductivity, increased interlayer distance in the vanadate nanofiber structure, enhanced layered structural stability, increased oxygen vacancies, a decreased work function, and the formation of p-p heterojunctions, all of which contribute to improved functionality of the composites materials. This research is expected to serve as a cornerstone for the development of industrial safety systems.建立工业安全系统所需的关键技术之一是基于气体传感器和可充电电池的便携式集成安全装置。为了给此类集成设备做准备,本研究重点关注通过简单的声化学方法合成钒酸钠纳米纤维(SVNF)和聚(3,4-乙烯二氧噻吩)(PEDOT)插层 SVNF(E-SVNF)复合材料,用于室温 NH3 气体传感和锌离子电池(ZIB)研究。将 E-SVNF 应用于锌离子电池 (ZIB) 可获得卓越的速率能力,在 15 A g-1 的条件下,容量为 192.13 mAh g-1。此外,它们还表现出了长期循环稳定性,在 15 A g-1 循环后仍能保持 83.47% 的容量。即使在室温下,含有 E-SVNF 的气体传感器也具有高响应和出色的选择性,对 10 ppm 和 70 ppm 的 NH3 气体的响应值分别为 1.059 和 1.113。ZIBs 和气体传感器电化学性能的显著提高归功于在 SVNF 层之间插入了导电聚合物。这提高了导电性,增加了钒酸盐纳米纤维结构中的层间距离,增强了层状结构的稳定性,增加了氧空位,降低了功函数,并形成了 p-p 异质结,所有这些都有助于提高复合材料的功能。这项研究有望成为开发工业安全系统的基石。Composites Science and Technology4D printed bio-inspired mesh composite materials with high stretchability and reconfigurabilityChengjun Zeng, Liwu Liu, Xiaozhou Xin, Wei Zhao, Cheng Lin, Yanju Liu, Jinsong Lengdoi:10.1016/j.compscitech.2024.110503 具有高拉伸性和可重构性的 4D 打印生物启发网状复合材料Strain engineering such as Kirigami design offers viable solutions for transforming rigid or even non-stretchable materials into highly stretchable structures, thus providing new opportunities for building flexible electronic devices with biological tissue-like mechanical properties. However, the stretchability of stretchable structures based on traditional Kirigami design strategies often relies on out-of-plane deformation, thus posing a great challenge for flexible electronic devices with high planarity requirements. Moreover, the low modulus properties of conventional soft materials also put forward new requirements for flexible electronic devices with complex mechanical environment adaptability. Here, Kirigami-like mesh composite materials (MCMs) based on shape memory polymer (SMP) and continuous carbon fibers, inspired by the laminar layout pattern of biological collagen tissues, were proposed and fabricated by 4D printing. 4D printed MCMs achieve elongation only through in-plane deformation and can combine excellent mechanical properties with high stretchability. The customizable fiber orientation enables MCMs with tunable stretchability from 1.8% to 375% and tensile modulus spanning four orders of magnitude from 0.04 MPa to 1375 MPa. In addition, owing to the variable stiffness properties and shape memory effect of SMP, it is also possible to achieve tunable stretchability and mechanical properties of MCMs with predetermined fiber orientation by controlling the ambient temperature, which facilitates the design of flexible electronic devices that conform to complex thermodynamic environments.应变工程(如 "剪纸"设计)为将刚性甚至不可拉伸的材料转化为高度可拉伸的结构提供了可行的解决方案,从而为制造具有类似生物组织机械特性的柔性电子设备提供了新的机遇。然而,基于传统 ""剪纸"设计策略的可拉伸结构的可拉伸性往往依赖于平面外变形,因此对平面度要求较高的柔性电子器件构成了巨大挑战。此外,传统软材料的低模量特性也对具有复杂机械环境适应性的柔性电子器件提出了新的要求。受生物胶原组织层状布局模式的启发,本文提出了基于形状记忆聚合物(SMP)和连续碳纤维的类桐木网状复合材料(MCM),并利用 4D 打印技术进行了制造。4D 打印 MCM 仅通过面内变形实现伸长,可兼具优异的机械性能和高拉伸性。可定制的纤维取向使 MCM 具有 1.8% 至 375% 的可调拉伸性,以及从 0.04 兆帕到 1375 兆帕的四个数量级的拉伸模量。此外,由于 SMP 具有可变刚度特性和形状记忆效应,因此还可以通过控制环境温度来实现具有预定纤维取向的 MCM 的可调拉伸性和机械特性,从而有助于设计符合复杂热力学环境的柔性电子器件。来源:复合材料力学仿真Composites FEM

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈