今日更新:International Journal of Solids and Structures 1 篇,Journal of the Mechanics and Physics of Solids 1 篇,Mechanics of Materials 1 篇,Thin-Walled Structures 1 篇
Modulating adhesion strength in multi-ferroic composite materials: Insights from adhesive contact with arbitrary profile indenters
Fa Wu, Shaobin Zhang, Chun Li, Xiangyu Li
doi:10.1016/j.ijsolstr.2024.112721
调节多铁素体复合材料的粘附强度:从粘合剂与任意轮廓压头的接触中获得启示
Adhesion control is a critical aspect of various applications, from industrial adhesion devices to the locomotion of insects on ceilings and walls. Multi-ferroic materials, which encompass mechanical, electrical, and magnetic properties, offer approaches for reversible adhesion control. This study presents a comprehensive theoretical framework for adhesive contact in multi-ferroic composite materials when subjected to axisymmetric rigid indenters with arbitrary profiles. We analytically derive the physical fields for various contact models, including Hertz contact, Johnson-Kendall-Roberts (JKR), and Maugis-Dugdale (MD) adhesive models. The obtained energy release rates indicate that the electric and magnetic potentials can modulate adhesion strength. The Griffith energy balance relation is employed to derive the indentation forces and penetration depths, which can be extended to a range of common indenters. Notably, the classical approximations fail when using small spherical indenters, but the study provides valid alternatives. The influence of amplitude and wavelength on contact behavior is explored, with greater effects observed for larger or smaller values. For cosine-shaped indenters, equivalence to flat-ended cylindrical punches is established under specific conditions. The study also reveals that the power indices for power-law-shaped indenters change the influence of electric and magnetic potentials on pull-off forces. These findings provide a theoretical fundament associated with the biomimetic and artificial adhesive systems and the modern testing techniques.
从工业粘附装置到昆虫在天花板和墙壁上的运动,粘附控制是各种应用的一个重要方面。包含机械、电和磁特性的多铁素体材料为可逆粘附控制提供了方法。本研究提出了多铁素体复合材料在受到具有任意轮廓的轴对称刚性压头作用时发生粘附接触的综合理论框架。我们分析推导了各种接触模型的物理场,包括赫兹接触、约翰逊-肯德尔-罗伯茨(JKR)和毛吉斯-杜格代尔(MD)粘合模型。获得的能量释放率表明,电势和磁势可以调节粘附强度。格里菲斯能量平衡关系用于推导压痕力和穿透深度,可扩展到一系列常见的压头。值得注意的是,在使用小型球形压头时,经典近似方法失效,但这项研究提供了有效的替代方法。研究探讨了振幅和波长对接触行为的影响,观察到振幅和波长值越大或越小,影响越大。在特定条件下,余弦形压头等同于平头圆柱冲头。研究还发现,幂律形压头的功率指数会改变电势和磁势对拉拔力的影响。这些发现为仿生和人工粘合剂系统以及现代测试技术提供了理论基础。
On rapid compaction of granular materials: Combining experiments with in-situ imaging and mesoscale modeling
Mohmad M. Thakur, Sohanjit Ghosh, Ryan C. Hurley
doi:10.1016/j.jmps.2024.105576
关于颗粒材料的快速压实:将实验与现场成像和中尺度建模相结合
Grain and pore kinematics are important features of the response of granular materials to impact loading and rapid compaction. These kinematics and the associated material-phase stresses control solidification processes in shock-driven manufacturing and ignition in energetic materials. Diagnostics used in traditional gas-gun experiments cannot resolve spatially-heterogeneous grain and pore kinematics during granular compaction. Similarly, continuum models of the granular compaction process do not account for this spatial heterogeneity, making predictions of solidification or ignition challenging. Here, we propose a method of accessing spatially-heterogeneous grain and pore behaviors during rapid compaction which involves x-ray tomography, in-situ x-ray phase contrast imaging, and mesoscale numerical modeling. We use this method to study heterogeneous grain and pore kinematics and local stresses in a ductile aluminum powder impacted at velocities up to 800 m/s. We first validate the mesoscale model by comparing its predictions with x-ray measurements from an impact experiment on a sample that was used to generate a numerical microstructure. We then quantify the evolution of variables such as 3D pore sizes and local stresses. We comment on the role of microstructure on the granular material’s response and the sensitivity of the material response to changes in structure, impact velocity, and sample size.
颗粒和孔隙运动学是颗粒材料对冲击加载和快速压实反应的重要特征。这些运动学和相关的材料相应力控制着冲击驱动制造和高能材料点火过程中的凝固过程。传统气 枪实验中使用的诊断方法无法解析颗粒压实过程中的空间均质颗粒和孔隙运动学。同样,粒状压实过程的连续模型也无法解释这种空间异质性,因此对凝固或点火的预测具有挑战性。在这里,我们提出了一种在快速压实过程中获取空间异质性颗粒和孔隙行为的方法,其中包括 X 射线断层扫描、原位 X 射线相衬成像和中尺度数值建模。我们利用这种方法研究了以高达 800 米/秒的速度冲击的韧性铝粉中的异质晶粒和孔隙运动学以及局部应力。首先,我们将中尺度模型的预测结果与用于生成数值微观结构的样品冲击实验的 X 射线测量结果进行比较,从而验证中尺度模型。然后,我们对三维孔隙大小和局部应力等变量的演变进行了量化。我们评论了微观结构对颗粒材料响应的作用,以及材料响应对结构、冲击速度和样品尺寸变化的敏感性。
Geometric effects on impact mitigation in architected auxetic metamaterials
T. Gärtner, S.J. van den Boom, J. Weerheijm, L.J. Sluys
doi:10.1016/j.mechmat.2024.104952
建筑辅助超材料对减缓冲击的几何效应
Lightweight materials used for impact mitigation must be able to resist impact and absorb the maximum amount of energy from the impactor. Auxetic materials have the potential to achieve high resistance by drawing material into the impact zone and providing higher indentation and shear resistance. However, these materials must be artificially designed, and the large deformation dynamic effects of the created structures must be taken into consideration when deciding on a protection concept. Despite their promise, little attention has been given to understanding the working mechanisms of high-rate and finite deformation effects of architected auxetic lattice structures. This study compares the static and dynamic elastic properties of different auxetic structures with a honeycomb structure, a typical non-auxetic lattice, at equivalent mass and stiffness levels. In this study, we limit the investigation to elastic material behavior and do not consider contact between the beams of the lattices. It is demonstrated that the equivalent static and dynamic properties of individual lattices at an undeformed state are insufficient to explain the variations observed in impact situations. In particular, the initial Poisson’s ratio does not determine the ability of a structure to resist impact. To gain a thorough comprehension of the overall behavior of these structures during localized, high rate compression, the evolution of the elastic tangent properties under compression and shear deformation was monitored, leading to a more profound understanding. Observations made in one configuration of stiffness and mass are replicated and analyzed in related configurations.
用于减缓撞击的轻质材料必须能够抵抗撞击并最大限度地吸收来自撞击器的能量。辅助材料有可能通过将材料吸入撞击区并提供较高的抗压和抗剪切能力来实现较高的抗冲击性。不过,这些材料必须经过人工设计,而且在决定保护概念时,必须考虑到所创建结构的大变形动态效应。尽管这些材料大有可为,但人们却很少注意了解建筑辅助晶格结构的高速率和有限变形效应的工作机制。本研究比较了不同辅助结构与蜂窝结构(一种典型的非辅助晶格)在同等质量和刚度水平下的静态和动态弹性特性。在本研究中,我们只研究弹性材料行为,不考虑晶格梁之间的接触。研究表明,单个晶格在未变形状态下的等效静态和动态特性不足以解释在冲击情况下观察到的变化。特别是,初始泊松比并不能决定结构的抗冲击能力。为了全面了解这些结构在局部高速压缩过程中的整体行为,我们对压缩和剪切变形下弹性正切特性的演变进行了监测,从而获得了更深刻的理解。对一种刚度和质量配置的观察结果在相关配置中进行了复 制和分析。
Machine learning assisted prediction and analysis of in-plane elastic modulus of hybrid hierarchical square honeycombs
Jian Yang, Dingkun Yang, Yong Tao, Jun Shi
doi:10.1016/j.tws.2024.111736
机器学习辅助预测和分析混合分层方形蜂窝的面内弹性模量
In this study, experimental, finite element (FE) simulation, machine learning (ML), and theoretical techniques are employed to investigate the in-plane elastic modulus (E_HHSH) of hybrid hierarchical square honeycombs (HHSHs). First, HHSHs with different configurations were fabricated using a 3D printer, and in-plane quasi-static compression tests were conducted on them. Then, 234 FE models are simulated to determine the E_HHSH of HHSHs with various configurations, and the results are used to train 11 ML models. Comparative analysis demonstrates that the Extreme Gradient Boosting (XGBoost) model has the best predictive capability. Moreover, a modified theory for E_HHSH is established based on the XGBoost model and existing theory, and its exceptional predictive capability is verified by comparing with experimental, FE, and existing theoretical results. Finally, the upper and lower bounds of E_HHSH are determined by the modified theory, and the Shapley Additive Explanation (SHAP) method is used to identify the importance of different geometric parameters on tailoring E_HHSH. The combination of theoretical and ML techniques provides a promising approach for developing a robust prediction model of material properties.
本研究采用实验、有限元(FE)模拟、机器学习(ML)和理论技术来研究混合分层方形蜂窝(HHSHs)的面内弹性模量(E_HHSH)。首先,使用 3D 打印机制作了不同结构的 HHSH,并对其进行了平面准静态压缩试验。然后,对 234 个有限元模型进行仿真,以确定具有不同配置的 HHSH 的 E_HHSH,并将结果用于训练 11 个 ML 模型。对比分析表明,极端梯度提升(XGBoost)模型具有最佳预测能力。此外,在 XGBoost 模型和现有理论的基础上,建立了 E_HHSH 的修正理论,并通过与实验、FE 和现有理论结果的比较,验证了其卓越的预测能力。最后,通过修正理论确定了 E_HHSH 的上下限,并利用夏普利加法解释(SHAP)方法确定了不同几何参数对定制 E_HHSH 的重要性。理论与 ML 技术的结合为开发稳健的材料特性预测模型提供了一种可行的方法。