今日更新:Composite Structures 1 篇,Composites Part A: Applied Science and Manufacturing 5 篇,Composites Part B: Engineering 2 篇,Composites Science and Technology 3 篇
Composite Structures
Multiband acoustic helical interface states in inverse-designed sonic crystals with glide symmetry
Yafeng Chen, Shuowei An, Zhihao Lan, Lei Fan, Liang An, Zhongqing Su
doi:10.1016/j.compstruct.2024.117994
具有滑行对称性的反向设计声波晶体中的多波段声波螺旋界面态
Acoustic topological insulators (ATIs) with topological states that are insensitive to defects and impurities offer a robust way to steer acoustic waves. However, current ATIs in square lattice only host topological interface states within one bulk bandgap, restricting their multiband applications. Here, we design the ATI, made of glide-symmetric sonic crystals (SCs), hosting multiband topological interface states within multiple bulk bandgaps. First, SCs restricted with glide and mirror symmetries are inversely designed to host multiple bulk bandgaps. Then, the ATI with multiband helical interface states is constructed by selecting two kinds of unit cells (UCs) from the inverse-designed SC and arranging them to form an interface. Both dual-band and triple-band ATIs are designed and experimentally validated. The total size of interface states hosted by the triple-band ATI is about 8.5 times of the record. Besides, by exploiting the mismatch of frequency windows of interface states at the horizontal and vertical interfaces, we realize acoustic demultiplexers for routing interface states. Our work suggests a route to engineering multiband ATIs, having promising applications in designing novel acoustic devices for multiband information processing and communication.
声拓扑绝缘体(ATI)的拓扑态对缺陷和杂质不敏感,为声波的转向提供了一种稳健的方法。然而,目前方晶格的声学拓扑绝缘体只能在一个体带隙内承载拓扑界面态,限制了其多波段应用。在这里,我们设计了由滑行对称声波晶体(SCs)构成的 ATI,在多个体带隙内承载多频带拓扑界面态。首先,受限于滑行和镜像对称性的声波晶体被反向设计为承载多个体带隙。然后,从反向设计的 SC 中选择两种单元单元(UC),并将它们排列形成一个界面,从而构建出具有多带螺旋界面态的 ATI。我们设计了双波段和三波段 ATI,并进行了实验验证。三波段 ATI 所承载的界面状态总大小约为记录的 8.5 倍。此外,通过利用水平和垂直界面上界面状态频率窗口的不匹配,我们实现了用于路由界面状态的声学解复用器。我们的工作为多频带 ATI 的工程设计提供了一条途径,在设计用于多频带信息处理和通信的新型声学设备方面具有广阔的应用前景。
Composites Part A: Applied Science and Manufacturing
Tailoring adherend surfaces for enhanced bonding in CF/PEKK composites: Comparative analysis of atmospheric plasma activation and conventional treatments
Ceren Yildirim, Hasan Ulus, Bertan Beylergil, Abdulrahman Al-Nadhari, Serra Topal, Mehmet Yildiz
doi:10.1016/j.compositesa.2024.108101
定制粘合剂表面以增强 CF/PEKK 复合材料的粘合力:大气等离子活化与传统处理方法的比较分析
Here, we propose the utilization of atmospheric plasma activation (APA), which outperforms peel-ply (PP) treatment and mechanical abrasion (MA) in achieving high-performance adhesively bonded carbon fiber/polyetherketoneketone (CF/PEKK) composites. This study covers several key aspects, including the chemical and morphological characterization of treated surfaces and mechanical performance assessments of single lap-joints (SLJs) under tensile and flexural loading conditions. In addition, in-situ acoustic emission (AE) monitoring is employed during tensile tests to determine dominant damage types and failure modes in the SLJs. Surface analysis shows that MA increases roughness, PP treatment decreases wettability, while APA enhances wettability by modifying the surface chemistry. Tensile and flexural tests reveal that APA-treated joints surpassed non-treated (NT) ones, with up to 5- and 7-times higher load-carrying performance, respectively, while fracture analysis suggests a shift from adhesive to cohesive failure. AE results show that increased AE events related to cohesive failure align with improved interface interactions.
Valorisation of waste pulp from materials recovery facility rejects for composite applications
Natalia Herrera, Diego Freire Ordóñez, Andre N. Gaduan, Kanjanawadee Singkronart, Daniel Hayes, Dhivya Puri, Koon-Yang Lee
doi:10.1016/j.compositesa.2024.108108
从材料回收设施的废渣中提取废纸浆用于复合材料的价值评估
Waste pulp was recovered from MRF rejects, purified, processed into paper sheets and laminated with polylactide (PLLA) films. The purification process employed produced waste pulp of different qualities. The mechanical properties of the resulting waste pulp fibre-reinforced laminated PLLA composites was indifferent to the type of waste pulp treatment used. All composites showed significant improvements over neat PLLA, highlighting the viability of using waste pulp as a potentially cheap and sustainable reinforcement for polymers. Lifecycle assessment further showed that the composites possessed lower net global warming potential, as well as the end-point impact categories of human health and ecosystem quality compared to neat PLLA. This is due to the higher mechanical performance of the composites, which leads to higher weight saving of the functional unit. Our work paves the way for the use of pulp rejects from the recycling process for higher value applications, diverting them from landfill or incineration.
A finite element percolation tunneling approach on the electrical properties of carbon nanotube elastomer nanocomposite pressure sensors
Alireza Alidoust, Mojtaba Haghgoo, Reza Ansari, Mohammad Kazem Hassanzadeh-Aghdam, Sung-Hwan Jang
doi:10.1016/j.compositesa.2024.108111
碳纳米管弹性体纳米复合材料压力传感器电特性的有限元渗流隧道法
A flexible pressure sensor utilizing carbon nanotubes (CNTs) is investigated employing a finite element methodology to delve into its electro-mechanical behavior. The responsive nature of the three-dimensional representative volume element, containing impenetrable CNT cylinders within an insulating hyperelastic elastomeric cube, is simulated to capture its sensitivity to pressure. Considering applied pressure and updated percolation pathways, a multi-step approach is employed to assess piezoresistivity. Upon adjusting positions of CNTs within the deformed state using the finite element method, novel pathways are identified using the critical distance criterion for percolation paths that contribute to the resistance network. Simulation results demonstrate good agreement with experimental data for resistivity and piezoresistive sensitivity of different CNT elastomeric nanocomposites. The finite element method helps to analyze influences of nanotube volume fraction, geometrical properties, and orientational configurations on the critical distance percolation onset. Lower CNT contents yield more substantial relative resistance changes due to fewer percolating routes.
Fatigue life simulation of the impacted carbon/epoxy composite laminates
Alireza Pakravan, Fathollah Taheri-Behrooz
doi:10.1016/j.compositesa.2024.108112
受冲击碳/环氧复合材料层压板的疲劳寿命模拟
The increasing use of composite materials in the aviation industry has led to a greater need to maintain composite structures’ safety against impact damage, especially when exposed to repetitive loading. Since experimental work can be challenging, proposing a simple and practical method of co-simulating composite laminates’ impact and fatigue behavior is crucial. This research presents composite and cohesive fatigue models based on the fundamental models of Shokrieh-Lessard and Turon. Additionally, two impact models with parameters consistent with these fatigue models are presented as well. Then, the impacted composite laminates are analyzed using a VUMAT that includes these models, and the results are compared to experimental data. The numerical analysis shows that the propagation patterns and shapes of different damage modes for impact and tension–tension fatigue are similar to experimental observations. However, for tension–compression, the simulation results differ partially from the tests. The tensile fatigue results showed that the impact had no significant effect on the specimen’s life. In contrast, a 2.1 J impact reduces specimens’ fatigue life for a maximum load of more than 40 % of the compressive strength, under tension–compression fatigue.
Carbon fibre reinforced bisphenol-A type SPEEK composite for water lubricated superlubricity
Minsong Wu, Tao Hu, Jianyong Lan, Xiaolei Li, Chenhui Zhang, Jianbin Luo
doi:10.1016/j.compositesa.2024.108113
用于水润滑超润滑的碳纤维增强双酚 A 型 SPEEK 复合材料
Polyether ether ketone (PEEK), as a high-performance engineering polymer, can be a promising material for water lubricated bearings. However, some modifications are imperative when it is widely employed in engineering. In this study, a novel bisphenol-A (BPA) type sulfonated polyether ether ketone (SPEEK-BPA) polymer was synthesized, and it was compounded with 10 wt% carbon fibre (SPEEK-BPA/10 %CF) to obtain a water lubricated material with ultralow friction coefficient (COF) and excellent wear resistance. The outstanding tribological properties of SPEEK-BPA/10 %CF was attributed to the adsorption of hydrated Na+ cations by –SO3¯ and the reinforcement of carbon fibre. The COF of SPEEK-BPA/10 %CF can be reduced as low as 0.009 when a 3 wt% NaCl solution was used as the lubricant at a low sliding speed (0.10 m/s). At the same time, the wear rate of SPEEK-BPA/10 %CF reached to a magnitude of 10-7 and 10-8 mm3/(Nm), which was much lower than commercial PEEK. Therefore, this friction-reducing and anti-wear composite has great potential to realize a water lubricated bearing with low noise and superlubricity.
The novel polybutadiene rubbers (CVBR) carrying 88–97% of long cis-1,4 polybutadiene segments (cis-PB, cis-1,4 content >98.3%) and 3–12% of long syndiotactic1,2-polybutadiene segments (sPB, 1,2 content >87.0%) could be successfully synthesized via in-situ coordination polymerizations of butadiene in hexane in our lab and also be scaled up via continuous polymerization process in pilot (scale: 200 t/a). The natural rubber (NR)-based compound formulations containing different contents of CVBR, and carbon black (CB) fillers were developed and the optimized NR/CVBR/CB vulcanizates with 40% of CVBR were manufactured for the sidewall of all-steel giant off-the-road tire. The storage modulus of NR/CVBR/CB compounds and the elastic modulus, tensile strength and tear strength of NR/CVBR/CB vulcanizates could be remarkably increased by increasing CVBR content. The crack generation and growth could be effectively restricted due to both the fast relaxation, the rigid polymer-filler interface, synergistic effect of high cis-polybutadiene and crystalline 1,2-polybutadiene particles on the strain-induced crystallization behaviors of rubber matrix. The heat build-up of NR/CVBR/CB vulcanizates could be greatly reduced by introduction of cis-PB segments in CVBR for the easy mobility and low hysteresis of macromolecular chains. The NR/CVBR/CB vulcanizates with high strength and elastic modulus, low heat build-up and high flex fatigue crack resistance would meet the requirement for high performance sidewall in manufacturing giant all-steel off-the-road tires.
Synergistic osteogenesis and angiogenesis in promoting bone repair by levistolide A-induced smad pathway activation
Zhengzhe Han, Ang Li, Yuanman Yu, Kai Dai, Wenjing Yin, Xiaolin Li, Jing Wang, Min Yu, Xin Qi, Qi Li
doi:10.1016/j.compositesb.2024.111348
左旋A诱导的smad通路激活促进骨修复的协同成骨和血管生成作用
Bone defects are a prevalent issue in orthopedics clinics, and tissue engineering offers a new hope for treatment. Angiogenesis ability is indispensable during the healing process of bone defects, and the combination of osteogenesis and angiogenesis ability is essential in treating bone defects effectively. Herein, with the aid of traditional Chinese medicine, we have discovered that Levistolide A, a component of Angelica sinensis, has the potential in treating bone defects due to its angiogenesis ability. In vitro experiments have demonstrated its ability to promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Levistolide A can also indirectly promote the proliferation and recruitment of endothelial cells. Our proteomics analysis revealed that Levistolide A inhibited skp-1 and activated the Smad pathway to exert its effect on bone marrow mesenchymal stem cells. In vivo experiments proved that combined with a bioactive material scaffold, Levistolide A is used to effectively repair rat skull defects. Based on the above results, we have discovered a small molecule, which is cheap and stable. It can also provide hope for treatment of a large number of clinical patients.
骨缺损是骨科临床中普遍存在的问题,组织工程为治疗带来了新的希望。在骨缺损的愈合过程中,血管生成能力是不可或缺的,而要想有效治疗骨缺损,就必须将成骨能力和血管生成能力结合起来。在此,我们借助传统中医药发现,当归中的成分左旋内酯 A 因其血管生成能力而具有治疗骨缺损的潜力。体外实验证明,它能够促进骨髓间充质干细胞的增殖和成骨分化。左旋内酯 A 还能间接促进内皮细胞的增殖和募集。我们的蛋白质组学分析表明,左旋A抑制skp-1,激活Smad通路,从而对骨髓间充质干细胞产生作用。体内实验证明,结合生物活性材料支架,左旋内酯 A 可有效修复大鼠颅骨缺损。基于上述结果,我们发现了一种廉价、稳定的小分子。它还能为大量临床患者的治疗带来希望。
Composites Science and Technology
Mechanical characterization of polymer-grafted graphene PEG nanocomposites using molecular dynamics
Cátia Guarda, Bruno Faria, José N. Canongia Lopes, Nuno Silvestre
doi:10.1016/j.compscitech.2024.110514
利用分子动力学分析聚合物接枝石墨烯 PEG 纳米复合材料的力学特性
It is known that most polymers exhibit poor interfacial compatibility with graphene sheets. Modification of graphene's surface by functionalization with small polymer chains from the same building blocks as the matrix polymer improves the compatibility of graphene in polymeric materials. In this paper, the mechanical behaviour of polyethylene glycol (PEG) nanocomposites with graphene grafted with polymeric chains under tensile and compression is investigated using molecular dynamics. The influence of the functional groups (-NH2 and –OH) that bond the polymer chain to graphene is analysed. It is found that the system containing the –NH2 functional group showed lower mechanical properties than the system containing the –OH functional group. The mechanical properties of five PEG-nanocomposites are investigated: PEG/G, PEG/GNH-1PEG-S, PEG/GNH-2PEG-L, PEG/GNH-1PEG-S-NH2, PEG/GO-1PEG-S. The radius distribution function values and the variation of interfacial interaction energy are also examined. It is shown that functionalization of the graphene sheet increases the magnitude of the interaction energy, and it also reveals higher adhesion between graphene surface and PEG matrix. It is found that the mechanical properties of PEG are mostly improved in the longitudinal direction (reinforcement up to 43 %). Despite the high interaction between the nanofiller and PEG matrix, the low intrinsic properties of the nanofiller, namely Young's modulus, as well as the rupture of the graphene sheet during the deformation process deteriorated the mechanical properties of the nanocomposite. The presence of polymeric chains grafted to graphene improves the adhesion between the graphene surface and the polymeric matrix but decreases its mechanical properties.
Flexible phase change composites based on hierarchically porous polypyrrole scaffold for broad-band solar absorption and efficient solar-thermal-electric energy conversion
Yu-long Liu, Zi-cheng Tang, Zi-jie Huang, Wan-jun Jiang, Ting-yu Zhu, Jie Chen, Jing-hui Yang, Xiao-dong Qi, Yong Wang
doi:10.1016/j.compscitech.2024.110519
基于分层多孔聚吡咯支架的柔性相变复合材料,用于宽带太阳能吸收和高效太阳能-热能-电能转换
Phase change materials (PCMs) with thermal energy storage property are vital in solar-thermal energy conversion and utilization systems. However, low thermal conductivity, low light absorption, and severe brittleness are major application-hindering factors. In this work, paraffin wax (PW) was vacuum impregnated into poly(dimethylsiloxane) (PDMS)/boron nitride (BN)/polypyrrole (PPy) foam to create flexible phase change composites (PCCs) with excellent thermal conductivity and solar-thermal energy conversion efficiency. The PDMS/BN/PPy foams were successfully prepared via the sugar template and chemical vapor deposition methods. The PDMS/BN/PPy/PW PCCs exhibited excellent phase change latent heat of 172 J·g−1 and dimensional retention ratio of 98.91%. The continuous BN network imparted the PCCs with enhanced thermal conductivity of 0.43 W m−1 K−1. Meanwhile, the flexible PCCs were capable of being elastically deformed and closely adhered to the rough surface, thus further improving the heat transfer efficiency. More importantly, the wrinkled PPy and the hierarchical porous structure improved light absorption by extending the optical path for multiple reflections, maintaining an outstanding solar-thermal energy conversion efficiency of 91.9%. A solar-thermal-electric energy conversion (STEEC) system was constructed to display the potential of PCCs to generate clean energy. PCCs could output a current of 84.7 mA and support the rotation of a fan for 243 s, even without light irradiation. This study provides a facile approach to preparing multi-functional PCCs, showing the advantages in the rapid collection and storage of solar energy.
Thin and ultra-broadband electromagnetic absorption carbonyl iron-based metamaterial via multiscale synergic dielectric-magnetic design
Bo Huang, Fang Ye, Yuqiang Liu, Jie Liang, Yuchen Cao, Laifei Cheng
doi:10.1016/j.compscitech.2024.110509
通过多尺度介电-磁协同设计实现超宽带薄电磁吸收羰基铁基超材料
Thin and ultra-broadband electromagnetic wave (EMW) absorption material is essential in the fields of electromagnetic compatibility and radiation protection. Unfortunately, conventional materials are difficult to achieve low frequency EMW absorption such as 2–4 GHz at a limited thickness. Herein, a multiscale design strategy is presented to overcome this shortcoming. Carbonyl iron particle was used as the starting material. Firstly, microstructure modification from spherical morphology (SCIP) to flake one (FCIP) via a ball milling process was used to improve CIP's electromagnetic properties. Afterthat, macroscopic electromagnetic metastructure with the FCIP/polyurethane (PU) composite units was designed and its geometrical configuration was optimized. Through the multiscale design, an effective absorption in 2∼40 GHz was achieved at a thickness of merely 5 mm, surpassing most of the reported metamaterials. The broadband absorption mechanism was deciphered by CST simulation, which includes the synergic low-frequency absorption contributed by the FCIP/PU composite with delicate dielectric/magnetic synergistic property and the optimized impedance matching in broadband frequency caused by the well-designed metastructure. Our study provides valuable insights for the development of thin and ultra-broadband-absorbing material.