今日更新:International Journal of Solids and Structures 6 篇,Journal of the Mechanics and Physics of Solids 1 篇,Mechanics of Materials 1 篇,International Journal of Plasticity 4 篇,Thin-Walled Structures 1 篇
International Journal of Solids and Structures
Decoding the origins of strength anisotropy in two-dimensional materials
Guoqiang Zhang, Siyu Liu, Huasong Qin, Yilun Liu
doi:10.1016/j.ijsolstr.2024.112762
解密二维材料强度各向异性的起源
Defects are inevitable in two-dimensional (2D) materials, which is widely recognized to affect the strength of 2D materials. It is known the uniaxial tension strength is significantly different along different directions of defective 2D materials. The defect induced strength anisotropy should have equal importance to defect strength, but unfortunately the mechanism and quantitative description of defect induced anisotropic strength are still unknown. In principle, the atomic origin of materials failure can be attributed to bond fracture, especially for 2D materials comprised of covalent bonds. From the viewpoint of bond fracture, the mystery of anisotropic strength of defective 2D materials is explored, that strength-orientation relations are consisted of complex multi-curves and each curve corresponds to the fracture of same bond. By considering the balance between bond stretch resulting from external loading and bond strength, a strength theory is developed, which can describe the anisotropic strength of graphene and h-BN with vast types of defects, like grain boundary, void, crack. This work deepens the understanding of defect induced anisotropic mechanical properties in 2D materials, which may facilitate defect engineering in 2D materials.
Contact mechanics of open-cell foams with macroscopic asperities
A. Wilkinson, J.-P. Crété, S. Job, M. Rachik, N. Dauchez
doi:10.1016/j.ijsolstr.2024.112769
具有宏观微孔的开孔泡沫的接触力学
Poroelastic materials mounted against rigid surfaces often result in partial contact between the two, affecting their mechanical interaction. The surface roughness of cellular materials introduces complexity in predicting their behavior due to the interface with partial contact. This interface exhibits a stiffness distinct from the bulk material, which is driven by the surface asperities and the preload. This study conducts compression experiments on an open-cell poroelastic melamine foam, and compares them to finite elements simulations and analytic predictions. The material’s intrinsic stress–strain nonlinearity is accounted for, and an original hyperelastic aging model is proposed to achieve accurate predictions of its compression stiffness across multiple time scales. Predicting the compression stiffness of a macroscopic pyramidal asperity demonstrates a good agreement with the simple analytic solution for an elastic pyramidal geometry. Using a Greenwood–Williamson-like model based on the distribution of asperities of different heights, we propose a method to predict the contact stiffness of a rough surface. Our findings have important implications for understanding and optimizing efficient vibration barriers, resulting from the simple stacking of layers and screens of raw poroelastic materials, a configuration widely adopted in the transportation and civil engineering industries.
A Hybrid Discrete-Finite Element model for continuous and discontinuous beam-like members including nonlinear geometric and material effects
Igor Bouckaert, Michele Godio, João Pacheco de Almeida
doi:10.1016/j.ijsolstr.2024.112770
包含非线性几何和材料效应的连续和不连续梁状构件的离散-有限元混合模型
This paper introduces a novel formulation, called Hybrid Discrete-Finite Element (HybriDFEM) method, for modeling one-directional continuous and discontinuous planar beam-like members, including nonlinear geometric and material effects. In this method, the structure is modeled as a series of distinct rigid blocks, connected to each other through contact pairs distributed along the interfaces. Each of those contact pairs are composed of two nonlinear multidirectional springs in series, which can represent either the deformation of the blocks themselves, or the deformation of their interface. Unlike the Applied Element Method, in which contact pairs are composed of one single spring, the current approach allows capturing phenomena such as sectional deformations or relative deformations between two blocks composed of different materials. This method shares similarities with the Discrete Element Methods in its ability to model contact interfaces between rigid or deformable units, but does not require a numerical time-domain integration scheme. More importantly, its formulation resembles that of the classical Finite Elements Method, allowing one to easily couple the latter with HybriDFEM. Following the presentation of its formulation, the method is benchmarked against analytical solutions selected from the literature, ranging from the linear-elastic response of a cantilever beam to the buckling and rocking response of continuous flexible columns, and rigid block stackings. One final example showcases the coupling of a HybriDFEM element with a linear beam finite element.
An in-plane phase-field ductile fracture model for orthotropic paperboard material
Alessandro Marengo, Umberto Perego, Eric Borgqvist, Johan Tryding, Matti Ristinmaa
doi:10.1016/j.ijsolstr.2024.112763
正交各向同性纸板材料的面内相场韧性断裂模型
A phase-field ductile fracture formulation for orthotropic paperboard materials is proposed, based on an anisotropic, multi-surface elastoplastic model describing the in-plane behavior of paperboard. A variational statement for the finite-step elastoplastic problem is extended to include the variational description of Griffith-type brittle fracture by a phase-field gradient term. The interaction between plastic and fracture dissipation mechanisms is modeled by introducing a scalar modulation function, assuming plasticity driven damage growth. This function depends on a scalar measure of the plastic strain components in the material orthotropy frame. It modifies the fracture activation criterion in a non-variational fashion, resulting in a direction-dependent material strength against crack propagation. The model performance is assessed by comparing numerical simulations and experimental tests conducted in a climate-controlled laboratory.
Peeling pressure-sensitive adhesive elastica from elastica with pinned and roller ends
Raymond H. Plaut
doi:10.1016/j.ijsolstr.2024.112764
将压敏胶弹性体与带销钉和滚轴的弹性体剥离
Quasi-static peeling of a horizontal elastica (the tape) from another horizontal elastica (the beam) supported by a pinned end and a roller end is analyzed. Bending resistance is assumed to dominate the behavior, and large deflections and rotations are allowed. The tape is shorter than the beam and is pulled upward at a constant angle with the horizontal. A transversality (debonding) condition is derived for peeling, based on the common fracture mechanics approach. Displacement control is considered. The associated force exhibits its peak value at the onset of peeling. The vertical deflection of the pulled end of the tape also is of interest, especially when the tape detaches from the beam. Equilibrium curves are determined, and the effects of the following parameters on the peak force and the detachment deflection are investigated: the relative thicknesses and moduli of elasticity of the tape and the beam; the relative lengths of the tape and the beam; the angle of pulling; and the nondimensional work of adhesion. The system may be used as a model of peeling bandages, medical patches, biosensors, and other wearable devices from skin. Other possible thin flexible substrates include fabric, paper, leather, rubber, and plastics.seen.
Prediction of temperature dependent effective moduli of metal particle composites with debonding damage
Xuyao Zhang, Xianhe Zhang, Pan Dong, Jianzuo Ma, Ruzhuan Wang, Weiguo Li
doi:10.1016/j.ijsolstr.2024.112775
具有脱粘损伤的金属颗粒复合材料随温度变化的有效模量预测
Debonding is one of the most commonly observed damage mechanisms in metal particle composites, which poses additional difficulties for material characterization and performance evaluation. In this paper, the equivalent modulus of debonded particles in tension and compression was derived in accordance with the debonding configurations, respectively. The debonded particles were then incorporated into the Mori-Tanaka method as a third phase with reduced modulus but perfectly bonded to the matrix. Finally, a micromechanical model of the temperature dependent effective moduli of metal particle composites was proposed, taking into account the degradation of the matrix modulus and the evolution of percentage of debonded particles at elevated temperatures. The model predictions were in high agreement with the experimental and simulation results, demonstrating the predictive ability of the micromechanical model. This study gives a highly practical forecasting toolkit for composite modulus evaluation over a wide temperature range. In addition, parametric analyses were carried out to investigate the effects of debonding configuration, temperature, and percentage of debonded particles, which contributes to further understanding of the debonding mechanism, leading to rational material design.
Curvature controls beading in soft coated elastic cylinders: Finite wavemode instability and localized modulations
Matteo Taffetani, Matthew G. Hennessy
doi:10.1016/j.jmps.2024.105606
曲率控制软涂层弹性圆柱体中的串珠:有限波模不稳定性和局部调制
Axisymmetric beading instabilities in soft, elongated cylinders have been observed in a plethora of scenarios, ranging from cellular nanotunnels and nerves in biology to swollen cylinders and electrospun fibers in polymer physics. One of the common geometrical features that can be seen in these systems is the finite wavelength of the emerging pattern. However, modelling studies often predict that the instability has an infinite wavelength, which can be associated with localized necking or bulging. In this paper, we consider a soft elastic cylinder with a thin coating that resists bending, as described by the Helfrich free energy functional. The bending stiffness and natural mean curvature of the coating are two novel features whose competition against bulk elasticity and capillarity is investigated. For intermediate values of the bending stiffness, a linear stability analysis reveals that the mismatch between the current and natural mean curvature of the coating can lead to patterns emerging with a finite wavelength. This analysis creates a continuous bridge between the classical solutions of the shape equation obtained from the Helfrich functional and a curvature-controlled zero-wavemode instability, similar to the one induced by the competition between bulk elasticity and capillarity. The weakly non-linear analysis predicts that the criticality of the bifurcation depends on the controlling parameter, with both supercritical and subcritical bifurcations possible. When capillarity is introduced, the criticality of the bifurcation changes in a non-trivial way.
Threshold and structure of HCP/FCC nucleation in BCC iron under arbitrary triaxial compression: Atomistic simulations
Xiu-Xia Guo, Dong-Dong Jiang, Jian-Li Shao
doi:10.1016/j.mechmat.2024.104977
任意三轴压缩下 BCC 铁中 HCP/FCC 成核的阈值和结构:原子模拟
Shear deformation is considered one of the primary factors determining the threshold of structural transition (ST). It is important to quantitatively express the relationship between shear deformation and the ST threshold for the in-depth development of ST dynamics models. This work used classical molecular dynamics methods to study the effect of shear deformation on the ST in iron by controlling the triaxial ratio of compression. Based on the simulation results, there are significant differences in the microstructure for different loading paths. HCP lamellar twins, HCP-FCC thin twins, and crossed HCP twins embedded with parallel hexahedral FCC grains are all observed, as uniaxial loading transitions to equiaxial loading. The changes in pressure and the softening range of shear stress under different triaxial compressions are revealed. By introducing the strain triaxiality (taking the ratio of shear strain to volumetric strain), a general expression of the pressure threshold of ST under high strain rate compression-shear was proposed. In addition, whether the close-packed plane is prone to phase transition under different strain environments is explained based on the results of stacking fault energy.
剪切变形被认为是决定结构转换(ST)阈值的主要因素之一。定量表达剪切变形与结构转变阈值之间的关系对于深入开发结构转变动力学模型非常重要。本研究采用经典分子动力学方法,通过控制三轴压缩比来研究剪切变形对铁中 ST 的影响。根据模拟结果,不同加载路径下的微观结构存在显著差异。当单轴加载过渡到等轴加载时,都会观察到 HCP 片状孪晶、HCP-FCC 薄孪晶以及嵌入平行六面体 FCC 晶粒的交叉 HCP 双胞胎。揭示了不同三轴压缩下压力和剪应力软化范围的变化。通过引入应变三轴性(取剪切应变与体积应变之比),提出了高应变率压缩剪切下 ST 压力阈值的一般表达式。此外,基于堆积断层能的结果,解释了在不同应变环境下紧密堆积平面是否容易发生相变。
International Journal of Plasticity
Atomic-scale observation and characterization of deformation twins in uniaxial tensile-deformed 120Mn13 steel
Zhimin Ding, Linnan Dong, Neng Fu, Jiaoyang Sun, Yongchang Bao
doi:10.1016/j.ijplas.2024.103943
单轴拉伸变形 120Mn13 钢中变形孪晶的原子尺度观测与表征
High-resolution transmission electron microscope was used to observe and characterize the different formation stages of zero-strain twins in uniaxial tensile-deformed 120Mn13 steel at the atomic scale, which revealed the growth process of zero-strain twins in coarse-grained austenitic manganese steels. Here, plenty of zero-strain twins are observed in deformed 120Mn13 steel and they can be formed by three types of precursors. Their processes of expansion and connection, thickening and thinning can be carried out through the transformation of 9R phase with the matrix and the twin. A new 9R phase with different stacking sequences is firstly discovered and defined as 9R-Ⅱ to distinguish it from the classical 9R phase (9R-Ⅰ). 9R-Ⅰ and 9R-Ⅱ have the same lattice structure but different internal atomic arrangements and satisfy a twin-like relationship. In addition, a new formation mechanism of zero-strain twins based on the 9R phase transformation is proposed.
Superior strength-ductility synergy of Mg-Nd-Zn-Zr alloy rod achieved by drawing at elevated temperatures
Baoxue Zhou, Xiang Wang, Jimiao Jiang, Chun Chen, Xiyuan Zhang, Jialin Niu, Jia Pei, Hua Huang, Deli Wang, Guangyin Yuan
doi:10.1016/j.ijplas.2024.103944
通过高温拉拔实现 Mg-Nd-Zn-Zr 合金棒材卓越的强度-电导率协同效应
Mg alloys with superior strength-ductility synergy is highly desired for applications. In this study, the as-extruded Mg-Nd-Zn-Zr (JDBM) alloy rod was subjected to single-pass drawing over a range of temperature 200 ∼ 600°C to enhance the properties. After drawing, a more homogeneous and refined microstructure developed because of dynamic recrystallization (DRX) and dynamic precipitation (DP). With the increase of drawing temperature, grain sizes increased first and then decreased due to the competition of grain nucleation and growth, while the sizes of the secondary phase particles varied in the same way. And a nearly basal texture evolved from a rare earth texture of the as-extruded sample. The yield strength of the as-drawn samples increased by ∼2.2 times with a sacrifice of elongation to fracture at different level. The high yield strength mainly originated from grain boundary and dislocation strengthening. An optimal combination of high yield strength (∼301 MPa) and good ductility (elongation to fracture of ∼19% and improved strain hardening capacity) was obtained after drawing at 500°C. The yield strength enhancement was mainly derived from texture and dislocation strengthening. Grain and secondary phase particle refinement, large volume fraction of low angle grain boundaries and reduced geometrically necessary dislocations are considered to be beneficial to the good ductility. In addition, a novel method has been proposed to fabricate materials with superior strength-ductility synergy by deformation with large strain at high temperatures to activate severe DP.
Multi-scale damage mechanism of hierarchically structured high-strength martensitic steels under shock loading
Zhaoguo Zhang, Sen Chen, Yifei Hong, Xuhai Li, Jian Zhang, Yong Xiao, Guoqiang Luo, Yuying Yu, Jianbo Hu
doi:10.1016/j.ijplas.2024.103945
冲击加载下分层结构高强度马氏体钢的多尺度损伤机理
The multi-scale damage behaviors and underlying mechanisms of hierarchically structured high-strength martensitic steels are investigated via plate-impact recovery experiments, postmortem characterizations. Plate-impact experiments were conducted at compressive peak stresses ranging from approximately 5.5 to 11.0 GPa, and the tensile strain rates are ∼105 s−1. Significant improvement in the spall strength of the heat-treated martensitic steel is achieved (5.4 GPa), about 80% higher compared to the as-received bainite steel. The spall failure of the investigated martensitic steel exhibited a mixed-mode combination of brittle (micro-cracks) and ductile (voids) characteristics, known as quasi-cleavage spallation. As the impact velocity increased, voids nucleated successively at different types of boundaries as follows: boundaries between enriched zone and depleted zones, prior austenite grain boundaries, packet boundaries, block boundaries and lath boundaries. Shear cracking was found to be an important mechanism to accommodate the severe plastic deformation during spallation, giving the strict geometric constraints due to void nucleation occurring tend at grain boundaries. Additionally, molecular dynamics simulations considering realistic hierarchical structure of Martensitic steel have been developed to validate the experimental results. These findings and simulation methods contribute a better understanding of the spall behavior of martensitic steels, as well as guidance for future design of high-strength martensitic steels with exceptional reliability and safety under extreme conditions.
Deformation mechanisms in the α phase of the Ti-6Al-2Sn-4Zr-2Mo titanium alloy: in situ experiments and simulations
S. Hémery, A. Naït-Ali, O. Smerdova, C. Tromas
doi:10.1016/j.ijplas.2024.103947
Ti-6Al-2Sn-4Zr-2Mo 钛合金 α 相的变形机制:现场实验与模拟
Titanium alloys are widely employed in aerospace applications due to an outstanding combination of properties. The variety of loading conditions and microstructures encountered in industrial components is urging the development of microstructure sensitive modeling capabilities. In particular, reliable predictions require a good knowledge of operating deformation mechanisms. The present study aims at providing a thorough characterization of deformation mechanisms in the near-α Ti-6Al-2Sn-4Zr-2Mo alloy using experiments and simulations. The sequential activation of deformation mechanisms in the α phase was monitored in situ during a tensile test carried out in a scanning electron microscope using a combination of slip traces analysis and electron back-scattered diffraction. Basal slip is activated first, and prismatic slip activity, which proceeds at a higher macroscopic stress level, is needed for a significant creep/relaxation to occur. While little evidence of < a> -type pyramidal slip was found, < c+a> pyramidal slip involved first-order pyramidal planes and operates at stress levels near or above the 0.2% proof stress. Atomic force microscopy characterization of the features of the different slip modes revealed that < a> slip is coarser and wavier than < c+a> slip. Twinning, which is usually neglected in such alloys within this strain regime, was observed to be slip stimulated at a plastic strain as low as 0.5 %. Crystal plasticity parameters leading to an accurate simulation of the activation sequence of deformation mechanisms were then determined. For this purpose, critical resolved shear stress values were derived for the different slip and twinning modes using specific approaches and subsequently validated using crystal plasticity simulations based on fast-Fourier transforms.
Aluminum alloy members are widely used in various engineering fields because of the light weight and corrosion resistance. However, the existing research on the stability of the aluminum alloy beam-column with web openings is insufficient. This study carried out the eccentrically compressed tests for 60 H-shaped section aluminum alloy perforated members, taking the opening number, opening diameter, slenderness ratio, and eccentricity distance around major axis as main variables. The tested specimens showed obvious lateral buckling. The effects of web openings on buckling mode, stability bearing capacity, longitudinal deformation, lateral deformation, and strain development of the member are studied. The influence of each variable on the mechanical properties is studied, which provides the basis for design of the structure members. Several main parameters are analyzed in depth using verified finite element model. Based on the results of test and FEA, the design method for lateral stability bearing capacity of H-shaped section aluminum alloy perforated members is proposed with reference to existing specifications.
铝合金构件因重量轻、耐腐蚀而被广泛应用于各种工程领域。然而,现有关于带腹板开孔铝合金梁柱稳定性的研究并不充分。本研究以开孔数量、开孔直径、细长比和主轴偏心距为主要变量,对 60 个 H 型截面铝合金穿孔构件进行了偏心压缩试验。试验结果表明,试样出现了明显的侧向屈曲。研究了腹板开孔对构件屈曲模式、稳定承载力、纵向变形、横向变形和应变发展的影响。研究了各变量对力学性能的影响,为结构构件的设计提供了依据。利用经过验证的有限元模型对几个主要参数进行了深入分析。根据试验和有限元分析的结果,参照现有规范,提出了 H 型截面铝合金穿孔构件横向稳定承载力的设计方法。