今日更新:Mechanics of Materials 1 篇,International Journal of Plasticity 1 篇,Thin-Walled Structures 1 篇
The effect of silica nanoparticles on the shock adiabatic relation and tensile strength in polyurethane
Zhi-Qiang Hu, Jian-Li Shao, Peng-Wan Chen
doi:10.1016/j.mechmat.2024.104979
纳米二氧化硅颗粒对聚氨酯冲击绝热关系和拉伸强度的影响
This work exploded the effect of silica nanoparticles on shock adiabatic relation and tensile fracture in polyurethane based on atomistic simulations. It is found that the non-uniform interface structures introduced by nanoparticles can increase the shock impedance, which also leading to increased twisting of polyurethane chains and the generation of local hotspots near the nanoparticles. The interface structures near the nanoparticle consists of polyurethane chains with a high gyration radius, and the average gyration radius increases approximately linearly with the increase in nanoparticle content. At lower shock velocity, the potential energy increment initially increases and then decreases with the increase in nanoparticle content. Bond analysis reveal that flexible segments dominate the bending and twisting deformations of polyurethane, while nanoparticles enhance the corresponding deformation degrees. Furthermore, nanoparticles can serve as void nucleation sites for early-stage tensile damage, resulting in a decrease in fracture strength. Differing from metals, the relationship between tensile strength and fracture temperature follows a more linear law. Nanoparticles inhibit the later growth and coalescence of voids by increasing the temperature and steric hindrance. The density and size distribution characteristics of voids are consistent with the changes in potential energy during the shock compression process. Unlike classical spallation, the curled polyurethane chains in the tensile region gradually orient along the shock direction, evolving into a void-fiber structure.
这项研究基于原子模拟,探讨了二氧化硅纳米粒子对聚氨酯冲击绝热关系和拉伸断裂的影响。研究发现,纳米粒子引入的非均匀界面结构会增加冲击阻抗,从而导致聚氨酯链扭曲加剧,并在纳米粒子附近产生局部热点。纳米粒子附近的界面结构由具有高回旋半径的聚氨酯链组成,平均回旋半径随着纳米粒子含量的增加而近似线性增加。在较低的冲击速度下,势能增量最初增加,然后随着纳米粒子含量的增加而减少。键合分析表明,柔性段在聚氨酯的弯曲和扭转变形中占主导地位,而纳米颗粒则能增强相应的变形度。此外,纳米颗粒可作为早期拉伸损伤的空洞成核点,导致断裂强度降低。与金属不同,拉伸强度与断裂温度之间的关系更多遵循线性规律。纳米颗粒通过提高温度和增加立体阻碍来抑制空隙的后期生长和凝聚。空隙的密度和大小分布特征与冲击压缩过程中的势能变化一致。与传统的剥落不同,拉伸区域中卷曲的聚氨酯链沿冲击方向逐渐定向,演变成空隙-纤维结构。
Enhanced grain boundary cohesion mediated by solute segregation in a dilute Mg alloy with improved crack tolerance and strength
An Yang, Yu-Jing Liu, Cheng Wang, Yipeng Gao, Peng Chen, Hong Ju, Weijiang Guo, Hong Ning, Kai Guan, Hui-Yuan Wang
doi:10.1016/j.ijplas.2024.103950
在稀镁合金中通过溶质偏析增强晶界内聚力,提高抗裂性和强度
Effects of solute segregation at grain boundaries (GBs) on the deformation mechanism and fracture behavior remain obscure for magnesium (Mg) alloys. Here, by introducing Zn segregation at GBs, we obtained an Mg-0.5Al-0.4Mn-0.2Ce-0.4Zn (wt.%) alloy achieving fracture elongation (FEL) of ∼33.6%, with a remarkable FEL improvement by 100% in comparison to Zn-free counterpart. Meanwhile, the tensile yield strength (TYS, 195.5 MPa) is increased by ∼27.5 MPa after trace Zn addition. Although trace Zn addition improves the fraction of GBs with high misorientation, it reconciles crack tolerance with enhanced strength. The introduction of Zn not only promotes pyramidal <c+a> slips and inhibits twinning nucleation, but also enhances the GB cohesion by Zn segregation via multi-scale simulations. Based on in-situ microstructure observation, we found that the enhanced GB cohesion enables the segregation-inspired hierarchical crack buffering, deflecting, or branching cracks. Enhanced GBs can also facilitate the continuous emission of <c+a> dislocations in neighboring grains irrespective of the onset of microcracks, forming a plastic zone to retard local strain concentration, thus avoiding microcrack percolation and attaining a crack-mediated elongation reserve of above 15%. Besides, the higher TYS in the Zn-containing alloy mainly stems from the enhanced solid-solution strengthening of Zn solutes, thus achieving strength and crack tolerance synergy.
对于镁(Mg)合金而言,晶界(GB)上的溶质偏析对变形机制和断裂行为的影响仍不明显。在这里,通过在晶界上引入 Zn 偏析,我们得到了一种 Mg-0.5Al-0.4Mn-0.2Ce-0.4Zn (重量百分比)合金,其断裂伸长率(FEL)达到了 ∼ 33.6%,与不含 Zn 的合金相比,FEL 显著提高了 100%。同时,添加微量锌后,拉伸屈服强度(TYS,195.5 兆帕)提高了 ∼27.5 兆帕。虽然微量 Zn 的添加提高了具有高错取向的 GB 的比例,但同时也兼顾了裂纹容忍度和强度的提高。通过多尺度模拟,锌的引入不仅促进了金字塔<c+a>滑移,抑制了孪晶成核,还通过锌偏析增强了国标内聚力。基于原位微观结构观察,我们发现增强的 GB 内聚力可实现由偏析激发的分层裂纹缓冲、偏转或分支裂纹。增强的 GB 还能促进 <c+a> 位错在相邻晶粒中的持续发射,而不管微裂纹是否出现,形成一个塑性区以延缓局部应变集中,从而避免微裂纹渗流,并达到 15%以上的裂纹介导伸长储备。此外,含锌合金的 TYS 较高,主要是由于锌溶质的固溶强化作用增强,从而实现了强度和抗裂性的协同作用。
Low-frequency vibration attenuation of metamaterial sandwich plate with lever-type inertial amplified resonators
Lei Gao, Cheuk Ming Mak, Chenzhi Cai
doi:10.1016/j.tws.2024.111827
带有杠杆型惯性放大谐振器的超材料夹层板的低频振动衰减功能
The utilization of sandwich plate structures is widespread across diverse engineering fields owing to their advantageous high stiffness-to-weight ratio properties. However, these lightweight and thin-walled structures commonly encounter challenges related to inadequate vibration performance in the low-frequency range, imposing significant limitations on their applications. This paper thereby presents a design for a metamaterial sandwich plate that incorporates lever-type inertial amplified resonators (IA-MSP) to achieve a low-frequency bandgap and effective vibration attenuation capability. The bandgap characteristics and vibration behavior of the IA-MSP are comprehensively studied through an integrated approach involving theoretical analysis, numerical simulations, and experimental studies. The dynamic model of the IA-MSP is mathematically formulated, theoretically elucidating the underlying inertial amplification mechanism within the proposed metamaterial sandwich plates. The investigation on vibration transmission is conducted to analyze the vibration attenuation performance of the IA-MSP, utilizing both numerical simulations and experimental methods. The findings reveal that lever-type resonators amplify the mass motion, thereby enhancing the effective mass of the system and leading to a reduction in the frequency associated with the coupled mode of the bandgap. This amplification facilitates the attainment of a low-frequency bandgap without the need for utilizing the inclusion of additional centralized mass or heavy local resonators. By altering the lever ratio R of the lever-type inertial amplified resonators, precise fine-tuning and optimization of the low-frequency bandgaps are achievable. Compared with traditional metamaterial sandwich plates with local resonators (LR-MSP) featuring identical geometrical and material characteristics, the proposed IA-MSP characterized by an R-value of 2 exhibits boundary frequencies that are half of those observed in the LR-MSP. With an increase in the lever ratio R of the IA-MSP, a noticeable trend emerges a decrease in the lower boundary frequency, accompanied by a corresponding shift of the bandgap towards lower frequencies. The present study's outcomes are anticipated to hold significant promise in the realm of sandwich plate design, with a specific focus on furnishing vibration attenuation capabilities at lower frequencies.
由于具有高刚度重量比的优势特性,夹层板结构在各种工程领域得到广泛应用。然而,这些轻质薄壁结构通常会遇到低频范围振动性能不足的挑战,从而对其应用造成极大限制。因此,本文介绍了一种超材料夹层板的设计,该设计结合了杠杆型惯性放大谐振器(IA-MSP),以实现低频带隙和有效的振动衰减能力。通过理论分析、数值模拟和实验研究等综合方法,对 IA-MSP 的带隙特性和振动行为进行了全面研究。用数学方法建立了 IA-MSP 的动态模型,从理论上阐明了所提出的超材料夹层板的基本惯性放大机制。利用数值模拟和实验方法对振动传递进行了研究,以分析 IA-MSP 的振动衰减性能。研究结果表明,杠杆型谐振器可放大质量运动,从而提高系统的有效质量,并降低与带隙耦合模式相关的频率。这种放大作用有助于实现低频带隙,而无需利用额外的集中质量或重型局部谐振器。通过改变杠杆式惯性放大谐振器的杠杆比率 R,可以实现低频带隙的精确微调和优化。与具有相同几何和材料特性的传统超材料夹层板局部谐振器(LR-MSP)相比,R 值为 2 的拟议 IA-MSP 的边界频率仅为 LR-MSP 的一半。随着 IA-MSP 杠杆比率 R 的增加,一个明显的趋势出现了,即低边界频率降低,同时带隙也相应地向低频移动。预计本研究成果将在夹层板设计领域大有可为,特别是在低频振动衰减能力方面。