首页/文章/ 详情

【新文速递】2024年4月26日复合材料SCI期刊最新文章

1天前浏览11

   

今日更新:Composite Structures 3 篇,Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 1 篇,Composites Science and Technology 2 篇

Composite Structures

A comprehensive analysis of low velocity impact response of [0/±45/90]s thin woven GFRP composites at room temperature

U.A. Khashaba

doi:10.1016/j.compstruct.2024.118160

[0/±45/90]s薄编织GFRP复合材料室温低速冲击响应综合分析

This study is motivated by the need to explore the low-velocity impact behavior of angle-ply thin woven GFRP composites with stacking sequence of [0/±45/90]s, especially the lack of literature concerning damage analysis correlation with a comprehensive range of measurements. The damage diameter, area, and perimeter length are characterized in this study by a novel AutoCAD image processing technique. The test results revealed that specimens subjected to impact energies in the range of 2–30 J are free from edge delamination compared to those tested at 40–50 J. Decreasing the contact duration at impact energy of 60 J is due to perforation accompanied with damage propagation toward the specimen edges and thus, the contact force is sharply dropped from its maximum value of about 4.48kN to 1.3kN. Consequently, both rebound speed and coefficient of restitution dropped to zero. The direct measurement of the energy threshold is increased in the following order: energy threshold at Fmax (2.3–14.9 J), first penetration (load drop) after peak load (23.9–25.6 J), penetration energy threshold (37.9 J), perforation energy threshold (31.1 J), and perforation and crack propagation energies (43.3 J). The perimeter length represents a novel damage parameter, exhibiting a strong correlation with impact energy, as evidenced by a high coefficient of determination of 0.97.

本研究的动机是探索堆叠顺序为 [0/±45/90]s 的角层薄编织 GFRP 复合材料的低速冲击行为,尤其是缺乏与全面测量相关的损伤分析文献。本研究采用新颖的 AutoCAD 图像处理技术对损伤直径、面积和周长进行了表征。试验结果表明,受到 2-30 J 冲击能量的试样与受到 40-50 J 冲击能量的试样相比,不会出现边缘分层现象。在受到 60 J 冲击能量时,接触持续时间缩短,这是由于穿孔伴随着损伤向试样边缘扩展,因此接触力从最大值约 4.48kN 骤降至 1.3kN。因此,回弹速度和恢复系数都降至零。能量阈值的直接测量值按以下顺序增加:Fmax 时的能量阈值(2.3-14.9 J)、峰值载荷后的首次穿透(载荷下降)(23.9-25.6 J)、穿透能量阈值(37.9 J)、穿孔能量阈值(31.1 J)以及穿孔和裂纹扩展能量(43.3 J)。周长是一个新的损伤参数,与冲击能量有很强的相关性,其决定系数高达 0.97。


Progressive failure simulation of angled composite beams subject to flexural loading

James Roach, Dianyun Zhang

doi:10.1016/j.compstruct.2024.118111

弯曲荷载作用下斜向组合梁的递进破坏模拟

Laminated composite structures, while offering weight savings compared with their metal counterparts, are susceptible to ply separation, (i.e., delamination mode of failure) due to the lack of through-thickness fiber reinforcements. In this paper, numerical simulations are used to gain an enhanced understanding of angled composite beam delamination when subjected to four-point bending consistent with the ASTM D-6415 test standard, with an expectation that the learning gained from this work is extensible to laminated composite components in general. While illustrating mesh sensitivity, manufacturing and frictional effects, four items of interest are examined: (1) the undamaged state/pre-peak load response, (2) the through-thickness peak tensile capability, (3) the post-peak load drop, and (4) the subsequent post-peak damaged response. A Finite Element Analysis (FEA) model is developed that incorporates the Smeared Crack Approach (SCA) to capture progressive failure modes within the element formulations directly, effectively eliminating the need for a priori specification of discrete delamination zones. The ability to incorporate failure directly within the element structure is particularly notable where laminates may not realistically permit a high number of interface layers or where geometry may be complex. Leveraging experimental data of curved composite laminates subject to four-point bending, the proposed approach successfully predicts the correct behavior throughout the damage progression. Additionally, this study offers an insight into effects of manufacturing-induced imperfections and frictions between the specimen and fixture on the prediction of inter-laminar strength of a curved composite part.

与金属复合材料相比,层压复合材料结构虽然减轻了重量,但由于缺乏贯穿厚度的纤维增强,容易发生层分离(即分层模式失效)。在本文中,数值模拟是为了更好地理解在符合ASTM D-6415测试标准的四点弯曲下的角度复合材料梁的分层,并期望从这项工作中获得的知识可以扩展到一般的层压复合材料部件。在说明网格灵敏度、制造和摩擦效应的同时,研究了四个感兴趣的项目:(1)未损坏状态/峰前负载响应,(2)贯穿厚度的峰值拉伸能力,(3)峰后负载下降,以及(4)随后的峰后损坏响应。开发了一种有限元分析(FEA)模型,该模型结合了涂抹裂纹方法(SCA)来直接捕获元件配方中的渐进失效模式,有效地消除了对离散分层区域的先验规范的需要。当层压板实际上不允许大量的界面层或几何结构可能很复杂时,将失效直接合并到元件结构中的能力尤其值得注意。利用弯曲复合材料层合板的四点弯曲实验数据,该方法成功地预测了整个损伤过程中的正确行为。此外,本研究还深入了解了制造缺陷和试样与夹具之间的摩擦对弯曲复合材料零件层间强度预测的影响。


Reducing Cf/SiC composite damages through collaborative control of laser ablating depth and grinding modes

Guijian Xiao, Xin Li, Kun Zhou, Yi He, Zhengyu Yang

doi:10.1016/j.compstruct.2024.118158

通过协同控制激光烧蚀深度和磨削方式减少Cf/SiC复合材料损伤

Cf/SiC composites are regarded as difficult-to-machine aerospace materials. A low-damage surface machining of Cf/SiC composite by laser-ablating assisted grinding (LAAG) was conducted, and investigated the effects of laser-ablating depth and grinding modes on surface/subsurface damages. The results showed that ablated material depth reached 420 μm after 1200 times scanning, while the effective ablating rate was inhibited by the depth. Compared with down grinding, the grinding forces and temperatures were substantially higher in up grinding, with a maximum increase of 123.5% and 140% in normal and tangential grinding forces, respectively; however, micro brittle fracture and ductile removal were remarkably enhanced in normal and transverse fibers, and surface macroscopic damage has been suppressed; subsurface damage remained insignificant, mainly exhibited in internal micro cracks and minor interfacial debonding. It was attributed to cutting characteristics of up grinding. Furthermore, as grinding depth increased, the material removal behavior underwent a brittle-ductile transition and the surface roughness grew accordingly. Moreover, a laser scanning angle of 0° and up grinding facilitated the occurrence of longitudinal fiber debonding, producing larger sized fiber bundle chips. Combining up grinding with 90° scanning angle at low grinding depth was an effective method to improve the surface quality of Cf/SiC composite.

Cf/SiC复合材料被认为是难以加工的航空航天材料。采用激光烧蚀辅助磨削(LAAG)技术对Cf/SiC复合材料进行了低损伤表面加工,研究了激光烧蚀深度和磨削方式对表面/亚表面损伤的影响。结果表明:经1200次扫描后,烧蚀材料深度达到420 μm,有效烧蚀速率受深度的抑制;与向下磨削相比,向上磨削的磨削力和磨削温度显著增大,法向磨削力和切向磨削力分别最大增大123.5%和140%;而在正向纤维和横向纤维中,微脆性断裂和韧性去除明显增强,表面宏观损伤受到抑制;亚表面损伤不明显,主要表现为内部微裂纹和少量界面剥离。这是由于上磨的切削特性造成的。随着磨削深度的增加,材料的去除行为发生脆性-韧性转变,表面粗糙度随之增大。此外,激光扫描角度为0°,向上磨削有利于纵向光纤脱粘的发生,产生较大尺寸的光纤束切屑。低磨削深度下90°扫描角联合磨削是提高Cf/SiC复合材料表面质量的有效方法。


Composites Part A: Applied Science and Manufacturing

Tensile strength prediction of unidirectional polyacrylonitrile (PAN)-based carbon fiber reinforced plastic composites considering stress distribution around fiber break points

Go Yamamoto, Kenta Oshima, Redha Akbar Ramadhan, TaeGyeong Lim, Yonas Tsegaye Megra, Ji Won Suk, Jun Watanabe, Haruki Okuda, Fumihiko Tanaka

doi:10.1016/j.compositesa.2024.108234

考虑纤维断裂点应力分布的单向聚丙烯腈基碳纤维增强塑料复合材料抗拉强度预测

Recent advancements in enhancing the mechanical characteristics of carbon fibers open up new application possibilities for carbon fibre-reinforced plastic (CFRP) composites. Particularly in unidirectional CFRPs, which form the basal structure of CFRP laminates, developing a micromechanics model capable of predicting the tensile strength of unidirectional CFRPs based on carbon fiber mechanical characteristics is a current aspiration. This study conducted a stress distribution analysis around the fiber fracture point to predict the tensile strengths of unidirectional CFRPs prepared with five types of polyacrylonitrile (PAN)-based carbon fibers, each with unique mechanical characteristics. Numerical simulation results obtained using a unidirectional CFRP model that considered the stress concentration, fiber axial stress, and bimodal Weibull distribution were reasonably consistent with the experimental results for the tensile strengths of unidirectional CFRP composites, regardless of the differences in the mechanical characteristics of the fiber. Our findings can provide guidance for designing further enhanced high-performance CFRP materials.

最近在提高碳纤维力学特性方面的进展为碳纤维增强塑料(CFRP)复合材料的应用开辟了新的可能性。特别是在单向碳纤维复合材料中,它构成了碳纤维复合材料层合板的基本结构,基于碳纤维的力学特性,开发一种能够预测单向碳纤维复合材料抗拉强度的微观力学模型是当前的一个愿望。本研究对纤维断裂点周围的应力分布进行了分析,以预测五种具有独特力学特性的聚丙烯腈(PAN)基碳纤维制备的单向cfrp的拉伸强度。考虑应力集中、纤维轴向应力和双峰Weibull分布的单向CFRP模型的数值模拟结果与实验结果基本一致,且不考虑纤维力学特性的差异。研究结果可为进一步设计高性能CFRP材料提供指导。


Composites Part B: Engineering

Design of Functionally Gradient Metastructure with Ultra-broadband and Strong Absorption

Chengtao Sun, Dawei Li, Tingting Liu, Qing An, Changdong Zhang, Yaoyao Li, Wenhe Liao

doi:10.1016/j.compositesb.2024.111484

 

超宽带强吸收功能梯度元结构设计

Rational design principles for ultra-broadband lattice-based metastructure absorbers (MMAs) remain scarcely explored, including elucidation of the governing absorption phenomena. This work presents Octet truss lattices gradient-tailored to achieve highly efficient wide-spectrum electromagnetic (EM) wave mitigation. The optimized 15 mm thick three-dimensional printed architectures comprise three stacked sub-layers with graduated densities spanning a reflective backing. Analysis of unit cell EM responses as a function of geometric parameters facilitates concurrent broadband absorption and minimal mass. Consequently, ultra-wideband absorption below -10 dB persists from 2.84-40.0 GHz under normal incidence, with strongly enhanced attenuation below -15 dB between 8.51-40.0 GHz. Additionally, consistent absorption capacity endures up to 60° for both transverse electric (TE) and transverse magnetic (TM) polarizations, empowered by the intricate conductive networks established through wave interactions. The unique combination of additive manufacturing, hierarchical metamaterial engineering, and physical insights provides a versatile strategy for customized broadband absorption systems across application domains.

超宽带晶格基元结构吸波器(MMAs)的合理设计原则仍然很少被探索,包括对控制吸收现象的阐明。这项工作提出了八元桁架晶格梯度定制,以实现高效的广谱电磁(EM)波减缓。优化的15毫米厚的三维打印结构包括三个堆叠的子层,其密度跨越反射背衬。分析作为几何参数函数的单元格电磁响应有助于同时宽带吸收和最小质量。因此,在正常入射下,在2.84-40.0 GHz范围内-10 dB以下的超宽带吸收持续存在,在8.51-40.0 GHz范围内-15 dB以下的衰减强烈增强。此外,由于通过波相互作用建立的复杂导电网络,横向电(TE)和横向磁(TM)极化的持续吸收能力可达60°。增材制造、分层超材料工程和物理洞察的独特结合,为跨应用领域的定制宽带吸收系统提供了一种通用策略。


Composites Science and Technology

A combination of "Inner - Outer skeleton" strategy to improve the mechanical properties and heat resistance of polyimide composite aerogels as composite sandwich structures for space vehicles

Qi Sun, Kun Tian, Sihan Liu, Qing Zhu, Shuai Zheng, Jing Chen, Liping Wang, Si Cheng, Zhen Fan, Si Cheng, Xupeng Fan, Dezhi Wang, Chunyan Qu, Changwei Liu

doi:10.1016/j.compscitech.2024.110620

采用“内外骨架”相结合的策略提高聚酰亚胺复合气凝胶的力学性能和耐热性,作为航天飞行器的复合夹层结构

Low density aerogels with high fatigue resistance are widely used in the manufacturing of core material structures in aircraft fuselage to be able to tolerate the extreme environment of aerospace. However, most organic aerogel materials have poor energy absorption of external impact forces, and are prone to irreversible deformation, such as contracture and collapse in the process of long-term service. In order to solve this problem, a new type of thermosetting-thermoplastic polyimide composite aerogel was prepared, with its microstructure presenting the coexistence of the inner and outer skeletons. The intermolecular forces promoted the assembly of the soft thermoplastic layer and the strong thermosetting layer in the thermodynamic process with 4.63 to 6.55 μm range. The hard-soft layer structure improved the compressive and the shear load bearing capacities by bending of the panel (Compressive modulus is 1.60MPa to 3.52MPa, tensile modulus is 1.04MPa to 1.45MPa). Its permanent degradation less than 1.5% after 500 cycles at 30% strain. C-CPIAs also exhibited excellent heat resistance and thermal insulation performances, with a T5% value of 612 °C (C-CPIA-2), Tg of 458 °C (C-CPIA-3). The sandwich materials can be used as outer protective composite material of aircraft fuselage for future deep space missions.

具有高抗疲劳性能的低密度气凝胶被广泛应用于飞机机身核心材料结构的制造,以适应航空航天的极端环境。然而,大多数有机气凝胶材料对外部冲击力的能量吸收能力较差,在长期服役过程中容易发生挛缩、塌陷等不可逆变形。为了解决这一问题,研究人员制备了一种新型热固性热塑性聚酰亚胺复合气凝胶,其微观结构呈现出内外骨架共存的特点。在 4.63 至 6.55 μm 的热力学过程中,分子间作用力促进了软热塑性层和强热固性层的组装。软硬层结构提高了板材的抗压和抗剪承载能力(抗压模量为 1.60MPa 至 3.52MPa,抗拉模量为 1.04MPa 至 1.45MPa)。在 30% 的应变下循环 500 次后,其永久降解率小于 1.5%。C-CPIA 还具有优异的耐热性和隔热性能,其 T5% 值为 612 ℃(C-CPIA-2),Tg 为 458 ℃(C-CPIA-3)。这种夹层材料可用作飞机机身的外层保护复合材料,用于未来的深空任务。


Fire behavior and post-fire residual tensile strength prediction of carbon fiber/phthalonitrile composite laminates

Jinchuan Yang, Chunming Ji, Dongqing Wang, Hanqi Zhang, Zhengong Zhou, Jiqiang Hu, Bing Wang

doi:10.1016/j.compscitech.2024.110624

 

碳纤维/邻苯二腈复合层压板的火灾行为及火灾后残余拉伸强度预测

Carbon fiber/phthalonitrile (Cf/PN) composite has a high potential for applications in the aerospace sector because of the outstanding heat and flame resistance of phthalonitrile resin. Here we aim to evaluate the fire behavior of Cf/PN laminate under localized one-sided flame heating as well as the residual tensile performance. The residual tensile strength after quasi-isothermal pyrolysis in an inert environment decreases linearly with the increase in the pyrolysis degree. The temperature response and pyrolysis behavior are analyzed through a combination of experiments and finite element simulations, and the damage mode of the laminate structure is concluded through morphological observation after flame exposure and the surface axial strain field using digital image correlation. Eventually, the residual tensile strength of laminates with different thicknesses after different times of flame exposure was effectively predicted based on the numerical simulated pyrolysis degree distribution. This research supplies fundamental test data on the mechanical properties of Cf/PN laminates and is expected to provide guidelines for the engineering application of Cf/PN composites in thermal protection/load-bearing all-in-one structures.

碳纤维/邻苯二腈(Cf/PN)复合材料具有优异的耐热性和阻燃性,在航空航天领域具有很大的应用潜力。本文旨在评价Cf/PN层合板在局部单侧火焰加热下的燃烧行为以及残余拉伸性能。惰性环境下准等温热解后的残余抗拉强度随热解程度的增加而线性降低。通过实验与有限元模拟相结合的方法分析了层压板结构的温度响应和热解行为,并通过火焰暴露后的形态观察和数字图像相关的表面轴向应变场得出层压板结构的损伤模式。最后,基于数值模拟热解度分布,有效预测了不同厚度层压板在不同火焰暴露次数后的残余拉伸强度。本研究为Cf/PN复合材料的力学性能提供了基础试验数据,有望为Cf/PN复合材料在热防护/承重一体化结构中的工程应用提供指导。


来源:复合材料力学仿真Composites FEM
ACTMechanicalAdditiveSystemMAGNET疲劳断裂复合材料燃烧通用航空航天增材裂纹BIM材料控制试验
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-11-14
最近编辑:1天前
Tansu
签名征集中
获赞 3粉丝 0文章 499课程 0
点赞
收藏
作者推荐

【新文速递】2024年4月30日固体力学SCI期刊最新文章

今日更新:International Journal of Solids and Structures 1 篇,Journal of the Mechanics and Physics of Solids 1 篇,International Journal of Plasticity 1 篇,Thin-Walled Structures 1 篇International Journal of Solids and StructuresAnalysis of compliant mechanisms with series and parallel substructures through the ellipse of elasticity theoryO. Sorgonà, S. Serafino, O. Giannini, M. Verottidoi:10.1016/j.ijsolstr.2024.112847用椭圆弹性理论分析具有串联和并联子结构的柔性机构Compliant mechanisms with complex hybrid configurations have been designed to meet the requirements of specific applications demanding high performance. Kinetostatic analysis, fundamental at the early stage of design, can become difficult for compliant systems characterized by series and parallel substructures. In the present paper, the ellipse of elasticity method is implemented for the analysis of a compliant mechanism with hybrid topology. Firstly, the ellipses associated to the different flexure hinges, characterized by uniform or non-uniform cross-sections, and by constant or variable initial curvature, are determined. Then, the unique ellipse representing the compliant mechanism is obtained by means of series and parallel compositions. By exploiting the antiprojective polarity properties of the ellipse, the kinetostatic analysis of the compliant system is reduced to a geometric problem with a straightforward solution. Linear and nonlinear finite element analyses and experimental tests are performed to verify the theoretical results.具有复杂混合配置的兼容机制已被设计用于满足要求高性能的特定应用程序的需求。动静力分析是设计初期的基础,但对于以串联和并联子结构为特征的柔性系统可能变得困难。本文将弹性椭圆法应用于具有混合拓扑结构的柔顺机构的分析。首先,确定以均匀或非均匀截面、恒定或可变初始曲率为特征的不同柔性铰链的椭圆;然后,采用串联和并联组合的方法,得到了代表柔性机构的唯一椭圆。通过利用椭圆的反射影极性特性,柔顺系统的动静力分析被简化为具有直接解决方案的几何问题。对理论结果进行了线性和非线性有限元分析和实验验证。Journal of the Mechanics and Physics of SolidsOrigami-based bidirectional self-locking system for energy absorptionZongbing Chen, Xingyu Wei, Lihong Yang, Jian Xiongdoi:10.1016/j.jmps.2024.105672 基于折纸的双向自锁能量吸收系统When a periodic cellular structure is subjected to high-intensity loading, lateral splashing can occur, significantly decreasing macro mechanical properties. Periodic structures with self-locking properties can overcome this inherent flaw and achieve excellent performance characteristics, including high energy absorption efficiency. In this regard, thin-walled periodic self-locking dissipative structures have been extensively studied recently. Most existing bend-dominated self-locking dissipative systems are two-dimensional and can only achieve self-locking under specific loading conditions. This paper describes a three-dimensional origami-based bidirectional self-locking system that can achieve self-locking under normal and shear loading. Furthermore, a plastic hinge model revealed the energy absorption mechanism of the origami-based cells, whose specific energy absorption (SEA) is higher than that of other existing bend-dominated self-locking cells. The bidirectional self-locking of the origami-based system was demonstrated through compression, bending and impact tests. This origami-based system has high energy absorption efficiency, and the novel bidirectional self-locking mechanism can significantly broaden the design space for periodic dissipative metamaterials.当周期性细胞结构受到高强度载荷时,会发生侧向飞溅,显著降低宏观力学性能。具有自锁特性的周期结构可以克服这一固有缺陷,获得优异的性能特征,包括高能量吸收效率。在这方面,薄壁周期性自锁耗散结构近年来得到了广泛的研究。现有的弯曲主导自锁耗散系统大多是二维的,只能在特定的载荷条件下实现自锁。本文介绍了一种基于折纸的三维双向自锁系统,该系统可以在法向和剪切载荷下实现自锁。此外,通过塑性铰链模型揭示了折纸基自锁单元的能量吸收机理,其比能量吸收(SEA)高于现有的其他弯曲主导自锁单元。通过压缩、弯曲和冲击试验证明了折纸系统的双向自锁特性。这种基于折纸的系统具有较高的能量吸收效率,并且新型的双向自锁机制可以显着拓宽周期耗散超材料的设计空间。International Journal of PlasticityCrack initiation mechanisms of micro-textured Ti60 alloys with different dwell sensitivities subjected to fatigue and dwell fatigue loadingBoning Wang, Weidong Zeng, Zibo Zhao, Runchen Jia, Jianwei Xu, Qingjiang Wangdoi:10.1016/j.ijplas.2024.103986 不同驻留灵敏度的微织构Ti60合金在疲劳和驻留疲劳载荷下的裂纹起裂机制In this work, Ti60 alloys with different micro-texture intensity were designed to elucidate the effect of micro-texture on fatigue life and dwell sensitivity and the difference in crack initiation mechanism for low-cycle fatigue (LCF) and dwell fatigue (DF). It was found that micro-texture region (MTR) significantly reduced LCF and DF lifetimes and increased dwell sensitivity compared to no-MTR samples. However, micro-texture does not change the characteristics of the crack initiation grains, and the fracture initiation region facet of all samples matches the (0001) basal plane and is related to basal slip. Therefore, the [0001] orientation domains for crack initiation in both fatigue states are discussed, and it is found that LCF tends to nucleate along the basal slip bands or basal twist grain boundaries (BTGBs) of the high SF grains, whereas DF nucleation is independent of the basal SF value, and the mechanism of initiation of hard oriented grain cracking is also included. In situ further demonstrated that hard grains can activate basal slip as well as cracking, and the possibility of soft/hard grain pairs generating dislocation pile-up stresses leading to cracking of hard grains was determined by theoretical calculations, providing experimental support and evidence for the soft/hard grain model. Based on these findings, criteria for the angle (θ) of the c-axis with respect to the loading axis and the basal SF range are proposed to determine the differences between LCF and DF with respect to the mechanisms of hard grain cracking and BTGB crack initiation.本文设计了不同微织构强度的Ti60合金,研究了微织构对疲劳寿命和驻留灵敏度的影响,以及低周疲劳(LCF)和驻留疲劳(DF)裂纹起裂机制的差异。结果表明,微结构区(MTR)显著降低了样品的LCF和DF寿命,提高了样品的驻留灵敏度。然而,微观织构并没有改变起裂颗粒的特征,所有试样的起裂区面均与(0001)基面相匹配,且与基面滑移有关。因此,对两种疲劳状态下裂纹萌生的取向域[0001]进行了讨论,发现LCF倾向于沿高SF晶粒的基底滑移带或基底扭转晶界(BTGBs)形核,而DF形核与基底SF值无关,并包含了硬取向晶粒裂纹萌生的机制。原位实验进一步证明了硬晶粒可以激活基底滑移和开裂,并通过理论计算确定了软/硬晶粒对产生位错堆积应力导致硬晶粒开裂的可能性,为软/硬晶粒模型提供了实验支持和证据。基于这些发现,提出了c轴相对于加载轴的角度(θ)和基本SF范围的准则,以确定LCF和DF在硬晶粒开裂和BTGB裂纹起裂机制方面的差异。Thin-Walled StructuresPrediction of vibro-acoustic response of ring stiffened cylindrical shells by using a semi-analytical methodCong Gao, Fuzhen Pang, Haichao Li, Xianghong Huang, Ran Liangdoi:10.1016/j.tws.2024.111930用半解析法预测环加筋圆柱壳的声振响应In this paper, a semi-analytical approach is presented to study the vibro-acoustic response of stiffened cylindrical shells. The analytical model is established by using multi-segment technique, artificial spring technology and smearing method, with the introduction of standard Fourier series and Jacobi polynomials. The Newmark integration approach is adopted to obtain the time domain vibration response, and the time domain Kirchhoff boundary integral formulation is employed to describe the exterior acoustic field. On this basis, the vibro-acoustic model of ring stiffened cylindrical shell can be established by considering the external excitation acting on the cylindrical surface. The accuracy and reliability of the current model are validated by comparing with the coupled FEM/BEM method and experiment, in which the object of the vibro-acoustic response test is a simply supported cylindrical shell. Additionally, the studies on influence of load parameters, edge restraints and structural scale parameters on the vibration and acoustic response of the ring stiffened cylindrical shell are conducted, which is helpful for the design of ring stiffened cylindrical shell to some extent.本文提出了一种半解析方法来研究加劲圆柱壳的振动声响应。采用多段技术、人工弹簧技术和涂抹法,引入标准傅立叶级数和雅可比多项式,建立了解析模型。采用Newmark积分法获得时域振动响应,采用时域Kirchhoff边界积分公式描述外声场。在此基础上,考虑作用于圆柱表面的外部激励,可以建立环加筋圆柱壳的振动声模型。通过与有限元/边界元耦合方法和简支圆柱壳振声响应试验的对比,验证了现有模型的准确性和可靠性。此外,还研究了载荷参数、边约束和结构尺度参数对环加劲圆柱壳振动声响应的影响,为环加劲圆柱壳的设计提供了一定的帮助。来源:复合材料力学仿真Composites FEM

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈