今日更新:Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 1 篇,Composites Science and Technology 1 篇
An experimental and theoretical study of biomimetic cement-epoxy resin composites: structure, mechanical properties, and reinforcement mechanisms
Shengjun Chen, Yang Zhou, Shuai Xiao, Yangzezhi Zheng, Wentao Chen, Weihuan Li, Xiangyan Wu, Wenxiao Zheng, Xiaoming Huang
doi:10.1016/j.compositesa.2024.108297
仿生水泥-环氧树脂复合材料的实验与理论研究:结构、力学性能和增强机制
There is an urgent demand within the engineering community for a material that possesses both high strength and toughness, especially for the widely-used cement-based composites, with an inherent defect of brittleness. Usually, introducing polymer emulsions into cements enhances the toughness at the expense of compressive strength. Taking Inspiration from the ‘brick-and-mortar’ structure found in shells, this study utilized the ice template method to create a layered cement framework and then filled epoxy resin into the gaps between adjacent cement lamellae, thereby preparing an ordered-microstructure composite with cement and epoxy resin lamellae alternatively arranged. Compared with traditional cement paste, the composite exhibited an impressive increase of up to 197% in flexural strength, 464% in flexural toughness, and 82% in compressive strength. It can be ascribed to the distinctive layered structure and the tightly bonded interface between the organic resin and inorganic cement, which lead to crack deflection and energy adsorption.
工程界迫切需要一种既具有高强度又具有高韧性的材料,特别是广泛使用的水泥基复合材料,其固有的脆性缺陷。通常,将聚合物乳液引入水泥中以牺牲抗压强度为代价来提高其韧性。本研究从贝壳的“砖瓦”结构中获得灵感,利用冰模板法创建了层状水泥框架,然后将环氧树脂填充到相邻水泥片层之间的空隙中,从而制备了水泥和环氧树脂片层交替排列的有序微观结构复合材料。与传统水泥浆体相比,该复合材料的抗弯强度提高了197%,抗弯韧性提高了464%,抗压强度提高了82%。这可以归因于有机树脂与无机水泥之间独特的层状结构和紧密结合的界面,导致裂缝偏转和能量吸附。
Novel full-scale model verified by atomic surface and developed composite microfiber and slurry polishing system
Feng Zhao, Zhenyu Zhang, Hongxiu Zhou, Junyuan Feng, Xingqiao Deng, Zhensong Liu, Fanning Meng, Chunjing Shi
doi:10.1016/j.compositesb.2024.111598
原子表面验证了新型全尺寸模型,开发了复合超细纤维和浆料抛光系统
Polishing mechanisms between fibers of a polishing pad and slurry are elusive, rising a challenge to develop high-performance composite polishing system. To solve this challenge, a novel full-scale model is proposed from mm to nm, consisting of macro, meso, micro and nanoscale. The model is verified by atomic surface and developed composite microfiber and slurry polishing system. Prior to chemical mechanical polishing, fused silica was polished by ceria slurry. A novel polishing pad was prepared using microfibers with a diameter of 2.5 μm, and a novel green slurry contained silica abrasives, hydrogen peroxide, sodium carbonate, sorbitol and xanthan gum. After CMP, an atomic surface with Ra of 0.108 nm was achieved, and the thickness of damaged layer is 1.95 nm. In terms of the macroscale model suggested, the maximum stress on the microfiber pad decreased 417.7%, and the direct contact area increased 41.23% compared with those of a commercial nonwoven pad. The peak stress exceeded 1 MPa on the commercial pad, while it reduced to about one fourth on the developed microfiber pad, according to the mesoscale fiber-slurry model proposed. Reactive force field molecular dynamics simulations, i.e. nanoscale model, reveal that a slurry layer existing at interface effectively impedes direct contact between abrasives and fused silica. With increasing the polishing load, material removal mode transformed from an atom to atomic chains. The constructed full-scale model and developed composite polishing system provide new insights to analyze, design and manufacture high-performance polishing pads, slurry and system.
抛光垫纤维与抛光浆之间的抛光机理尚不清楚,这给高性能复合抛光系统的开发带来了挑战。为了解决这一挑战,提出了一种新的全尺寸模型,从毫米到纳米,包括宏观,中观,微观和纳米尺度。利用原子表面对模型进行了验证,并开发了复合超细纤维-浆料抛光系统。在化学机械抛光之前,熔融二氧化硅是用铈浆抛光的。采用直径为2.5 μm的超细纤维和含有二氧化硅磨料、双氧水、碳酸钠、山梨醇和黄原胶的新型绿色浆料制备了新型抛光垫。经CMP处理后,得到了Ra为0.108 nm的原子表面,损伤层厚度为1.95 nm。宏观尺度模型表明,与商用非织造布垫相比,超细纤维垫的最大应力减小了417.7%,直接接触面积增加了41.23%。根据所提出的中尺度纤维-泥浆模型,商业垫的峰值应力超过1 MPa,而开发的微纤维垫的峰值应力降低到约四分之一。反应力场分子动力学模拟(即纳米尺度模型)表明,界面处存在的浆料层有效地阻碍了磨料与熔融二氧化硅的直接接触。随着抛光载荷的增加,材料的去除方式由原子向原子链转变。构建的全尺寸模型和开发的复合抛光系统为高性能抛光垫、抛光浆和抛光系统的分析、设计和制造提供了新的见解。
Cycle-consistent generative adversarial networks for damage evolution analysis in fiber-reinforced polymers based on synthetic damage states
Ramon Helwing, Selim Mrzljak, Daniel Hülsbusch, Frank Walther
doi:10.1016/j.compscitech.2024.110695
基于合成损伤状态的纤维增强聚合物损伤演化分析的周期一致生成对抗网络
Analyzing computed tomography (CT) scans is challenging and time-consuming due to their high complexity. Machine learning, particularly in the form of segmentation techniques, has emerged as the state-of-the-art approach for defect detection in parts and materials. However, the lack of pixel-accurate labeled training data remains a significant challenge. This paper presents a damage state transformation approach based on a cycle-consistent generative adversarial network (CycleGAN) using fatigue damage states of fiber-reinforced polymers. The generated synthetic data is visually almost indistinguishable from real data. Introduced damage can be determined by calculating the damage removed during the transformation from a high-damage state to a low-damage state. Using multiple transformation steps in detecting and distinguishing different damage states the effectiveness is demonstrated. In addition, the virtual addition of damage to undamaged specimens is investigated. The results show that certain damages exhibit chaotic generation across successive slices while maintaining semantic connections in specific regions across multiple slices. Overall, this research presents a valuable approach for improved self-supervised damage detection and characterization in CT scans, with potential applications in materials analysis and structural health monitoring.
由于其高度复杂性,分析计算机断层扫描(CT)是一项具有挑战性和耗时的工作。机器学习,特别是以分割技术的形式,已经成为零件和材料缺陷检测的最先进方法。然而,缺乏像素精确的标记训练数据仍然是一个重大挑战。针对纤维增强聚合物的疲劳损伤状态,提出了一种基于循环一致生成对抗网络(CycleGAN)的损伤状态转换方法。生成的合成数据在视觉上与真实数据几乎无法区分。引入的伤害可以通过计算从高伤害状态到低伤害状态转换过程中移除的伤害来确定。采用多变换步骤检测和区分不同损伤状态的有效性得到了验证。此外,还研究了未损伤试件的损伤虚拟叠加。结果表明,某些损伤在连续切片上产生混沌,而在多个切片上保持特定区域的语义连接。总的来说,这项研究为改进CT扫描中的自监督损伤检测和表征提供了一种有价值的方法,在材料分析和结构健康监测方面具有潜在的应用前景。