首页/文章/ 详情

【新文速递】2024年6月11日复合材料SCI期刊最新文章

1天前浏览29

   

今日更新:Composite Structures 4 篇,Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 1 篇,Composites Science and Technology 3 篇

Composite Structures

Line finite element method for geometrically nonlinear analysis of functionally graded members accounting for twisting effects

Guanghua Li, Zi-Zhang Gu, Hao-Yi Zhang, Weihang Ouyang, Si-Wei Liu

doi:10.1016/j.compstruct.2024.118268

 

考虑扭转效应的功能梯度构件几何非线性分析的线有限元方法

Functionally graded materials with spatially varying properties have gained widespread use in various engineering disciplines due to their exceptional mechanical characteristics. Nevertheless, these materials can lead to non-symmetric properties of cross-sections and an offset between centroid and shear center of functionally graded (FG) members, thereby significantly affecting the mechanical behavior. This phenomenon, known as twisting effects, poses a substantial challenge for the geometrically nonlinear analysis of FG members, as existing methods rely on traditional beam-column elements that assume the centroid and shear center of sections coincide. Thus, this paper proposes a new framework for geometrically nonlinear analysis of FG members, incorporating twisting effects through a novel Timoshenko beam-column element. An efficient finite-element-based approach that employs the nonhomogeneous plane triangle (NPT) element for calculating the cross-sectional properties of arbitrary FG cross-sections is presented. These cross-sectional properties are then utilized within the advanced line-element formulation to perform geometrically nonlinear analysis of FG structures considering twisting effects. The accuracy of the proposed method is validated through three examples, followed by several case studies to examine the impact of twisting effects on FG members. Furthermore, the proposed cross-section analysis method is integrated into a new structural analysis software MSASect2 to facilitate its application.

具有空间变化特性的功能梯度材料由于其优异的力学特性在各种工程学科中得到了广泛的应用。然而,这些材料会导致功能梯度(FG)构件的截面非对称特性和质心与剪切中心之间的偏移,从而显著影响力学行为。这种被称为扭转效应的现象对FG构件的几何非线性分析提出了实质性的挑战,因为现有的方法依赖于传统的梁柱单元,假设截面的质心和剪切中心重合。因此,本文提出了一种新的框架,用于FG构件的几何非线性分析,通过一种新的Timoshenko梁柱单元纳入扭转效应。提出了一种利用非均匀平面三角形(NPT)单元计算任意FG截面截面特性的有效有限元方法。这些截面特性然后在先进的线素公式中被利用,以执行考虑扭转效应的FG结构的几何非线性分析。通过三个实例验证了所提出方法的准确性,然后通过几个案例研究来检查扭转效应对FG构件的影响。此外,本文还将所提出的截面分析方法集成到新的结构分析软件MSASect2中,以方便其应用。


Review on mechanical properties of metal lattice structures

Xun Miao, Jianxin Hu, Yiyi Xu, Jun Su, Yang Jing

doi:10.1016/j.compstruct.2024.118267

金属晶格结构力学性能研究进展

Metallic lattice structures are garnering increasing attention across various research domains for their potential to create lightweight yet high-strength solutions. Their appeal largely stems from a range of beneficial attributes, including their low weight, substantial specific strength and stiffness, and superior energy absorption qualities. These characteristics have facilitated their widespread use in industries like aerospace, shipping, defense, and automotive, particularly in scenarios demanding weight minimization, multifunctionality, and enhanced safety in intricate environments. The mechanical properties of these structures are, therefore, of paramount importance. This paper offers an exhaustive review and synthesis of existing research approaches, production techniques, and evaluations of both static and dynamic mechanical properties associated with metallic lattice structures. It starts by delineating the various types and manufacturing methods, followed by an analysis of factors impacting their mechanical properties. The paper concludes by exploring prospective research avenues concerning the static and dynamic mechanical performance of metallic lattice structures.

金属晶格结构因其创造轻质高强度解决方案的潜力而在各个研究领域受到越来越多的关注。它们的吸引力很大程度上源于一系列有益的属性,包括它们的低重量,可观的比强度和刚度,以及优越的能量吸收特性。这些特性促进了它们在航空航天、航运、国防和汽车等行业的广泛应用,特别是在复杂环境中要求重量最小化、多功能和增强安全性的场景中。因此,这些结构的力学性能是至关重要的。本文对现有的研究方法、生产技术以及与金属晶格结构相关的静态和动态力学性能的评估进行了详尽的回顾和综合。它首先描述了各种类型和制造方法,然后分析了影响其机械性能的因素。最后,对金属晶格结构静动力力学性能的研究方向进行了展望。


A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS

Qiuhan Liu, Qiang Wang, Jiansheng Guo, Wenquan Liu, Ruicong Xia, Jiayang Yu, Xinghao Wang

doi:10.1016/j.compstruct.2024.118272

基于Transformer的神经网络用于石英纤维增强聚合物弯曲结构的自动分层表征

Quartz fiber-reinforced polymer (QFRP) is a vital non-polar material used in aviation wave-transparent structural components. Automatic characterization of delamination defects in QFRP is critical to aviation structural component safety. Terahertz time-domain spectroscopy (THz-TDS) is one of the new non-destructive testing (NDT) methods with highly accurate characterization of internal defects in non-polar material. Hence, attempts to extract features of THz time-domain signals for automatic characterization have been made by using deep learning algorithms. In this work, a Transformer-based neural network to classify the THz time-domain signals collected from a QFRP curved structure for automatic characterization of pre-embedded delamination defects has been reported. A THz-TDS system combined with a collaborative robot for collecting the THz signals from QFRP curved structure has been built. An automatic characterization method framework is developed. Results show that the precision rates of Transformer-based neural network for 1st delamination to 5th delamination are 1.0, 1.0, 1.0, 0.985, 1.0, and F1 score of it is 0.982. During the process of testing, delamination defects inside the QFRP curved structure were visualized using pixels with different colors. Results indicate that the Transformer-based neural network can characterize all pre-embedded delamination defects while minimizing false identification of non-defective areas, performing outstanding generalization.

石英纤维增强聚合物(QFRP)是一种重要的非极性材料,用于航空透波结构部件。自动表征 QFRP 中的分层缺陷对航空结构部件的安全性至关重要。太赫兹时域光谱(THz-TDS)是一种新型无损检测(NDT)方法,可对非极性材料的内部缺陷进行高精度表征。因此,人们尝试使用深度学习算法来提取太赫兹时域信号的特征,以便进行自动表征。在这项工作中,报告了一种基于变压器的神经网络,用于对从 QFRP 曲线结构中收集到的太赫兹时域信号进行分类,以自动表征预埋分层缺陷。建立了一个 THz-TDS 系统,该系统与协作机器人相结合,用于从 QFRP 曲面结构中采集 THz 信号。开发了自动表征方法框架。结果表明,基于变压器的神经网络对第 1 层分层至第 5 层分层的精确率分别为 1.0、1.0、1.0、0.985、1.0,其 F1 分数为 0.982。在测试过程中,QFRP 曲线结构内部的分层缺陷用不同颜色的像素可视化显示。结果表明,基于变压器的神经网络可以表征所有预埋分层缺陷,同时最大限度地减少对非缺陷区域的错误识别,具有出色的泛化能力。


Form-finding of thermal-adaptive pin-bar assemblies based on eigenvalue modification

Hongchuang Liu, Hua Deng

doi:10.1016/j.compstruct.2024.118275

基于特征值修正的热自适应针杆组件寻形

Lattice structures with tunable expansion properties have been investigated in multidisciplinary fields to control the temperature effects of structures or materials. The expected thermal adaptivity can be achieved by optimizing the structural geometry. A novel method for the form-finding of thermal-adaptive pin-bar assemblies is developed in this paper by considering the control of structural temperature effects as the minimization of the potential energy of the system. Based on the stationarity condition of the potential energy with respect to the nodal coordinates, the compatibility relationship between the thermal elongations of members and the target nodal displacements is proven to be the sufficient and necessary condition for structural thermal adaptivity. The solvability of the compatibility equation is determined by the rank equality between the compatibility matrix and its augmented form, which can be measured by the number of nonzero eigenvalues of its Gramian matrix. The analytical relationship between the eigenvalues of the Gramian matrix and the nodal coordinates is established using the matrix perturbation theory. A numerical strategy based on Newton’s method is proposed in which the eigenvalues are gradually modified by adjusting the nodal coordinates until the rank equality is satisfied. To address the existence of multiple solutions with structural thermal adaptivity, structural symmetry and periodicity constraints are introduced to narrow the solution space. The thermal-adaptive configurations of three illustrative pin-bar assemblies are analyzed using the proposed form-finding method, and the expected thermal deformations are verified for the obtained configurations using the finite element software ABAQUS. Comparing the results obtained by the proposed method with those obtained by nonlinear programming and the genetic algorithm validates the advantages of the proposed method in terms of computational time, optimality of the obtained configuration and applicability to complex structural geometries.

具有可调膨胀特性的晶格结构在多学科领域得到了广泛的研究,用于控制结构或材料的温度效应。通过优化结构的几何形状,可以达到预期的热适应性。将结构温度效应控制作为系统势能的最小化,提出了一种热自适应针杆组件寻形的新方法。基于势能相对于节点坐标的平稳条件,证明了构件热伸长与目标节点位移的相容关系是结构热自适应的充要条件。相容方程的可解性由相容矩阵与其增广形式之间的秩相等决定,可由相容矩阵的非零特征值的个数来衡量。利用矩阵摄动理论建立了格拉姆矩阵的特征值与节点坐标的解析关系。提出了一种基于牛顿法的数值策略,通过调整节点坐标逐渐修正特征值,直至满足秩相等。为了解决具有结构热自适应的多解的存在性,引入结构对称性和周期性约束来缩小解空间。采用所提出的寻形方法对3个典型销杆组件的热自适应结构进行了分析,并利用有限元软件ABAQUS对得到的结构进行了预期热变形验证。将所提方法与非线性规划和遗传算法的计算结果进行了比较,验证了所提方法在计算时间短、构型最优性好、适用于复杂几何结构等方面的优势。


Composites Part A: Applied Science and Manufacturing

A direct correlation between damage parameters and effective permeation coefficients in composite laminates

Raffael Bogenfeld, Caroline Lüders, Michael Ebermann, Vineeth Ravi

doi:10.1016/j.compositesa.2024.108307

复合材料层合板损伤参数与有效渗透系数之间的直接关系

We introduce an innovative approach for determining the gas permeability of composite laminates, explicitly accounting for inter-fiber fracture. Our method forges a direct correlation between the Continuum Damage Mechanics (CDM) damage parameter for transverse inter-fiber fracture and the effective permeation coefficients, which are crucial in assessing leak tightness. This correlation stems from a geometric similarity between the ratio of the damaged material’s load-carrying capacity to that of its pristine state, and the relative projected crack length as crucial parameter for the effective permeability assessment. This CDM-based approach represents a significant advancement in directly deriving a laminate’s permeability from mechanical failure analysis results. This is essential for the design process of Type V hydrogen storage tanks. Literature-based experimental results validate the plausibility of our method, proving its effectiveness across various laminate orientations and damage scenarios. Nonetheless, the observed deviations highlight the need for detailed damage information, elaborate material characterization.

我们介绍了一种创新的方法来确定复合材料层合板的透气性,明确地考虑纤维间断裂。我们的方法在横向纤维间断裂的连续损伤力学(CDM)损伤参数与有效渗透系数之间建立了直接关联,而有效渗透系数是评估泄漏密封性的关键。这种相关性源于损坏材料的承载能力与其原始状态的承载能力之比之间的几何相似性,以及相对预计裂缝长度作为有效渗透率评估的关键参数。这种基于cdm的方法在直接从机械失效分析结果中得出层压板的渗透率方面取得了重大进展。这对V型储氢罐的设计过程至关重要。基于文献的实验结果验证了我们的方法的合理性,证明了它在各种层压板方向和损伤场景下的有效性。尽管如此,观察到的偏差强调需要详细的损伤信息,详细的材料表征。


Composites Part B: Engineering

Millefeuille-inspired biomass alternate multilayer composite, for excellent absorption-dominated, broadband EMI shielding and Joule heating

Qi Zhang, Xiaohong Tang, Qian Zhao, Xianchun Chen, Ke Wang, Qin Zhang, Qiang Fu

doi:10.1016/j.compositesb.2024.111620

 

千叶启发的生物质交替多层复合材料,具有优异的吸收主导,宽带EMI屏蔽和焦耳加热

The development of biomass electromagnetic interference (EMI) shielding materials with low cost, low reflection(R-value), and high shielding efficiency is promising but also challenging. Inspired by the alternate structure of a millefeuille, we propose an alternating assembly approach for conductive and magnetic layers. Employing sustainable bamboo fibers (BF) and biodegradable polylactic acid (PLA) as raw matrix, the magnetic and conductive layers were fabricated by compositing copper-plated BF (Cu@BF) and iron-plated BF (Fe@BF) with PLA, respectively. By alternately stacking magnetic and conductive layers and followed by hot pressing, the high EMI SE and low R-value biomass multilayer composite with “multi-(absorption-reflection-reabsorption)” structures were obtained. The performance of different alternating layers (3/5/7/9 layers) was studied, and a linear correlation between layer number, SE, and R-value was established. The results demonstrate that increasing the alternate layer number could readily tune the SE in the X-band from 45.02 dB (3-layer) to 80.2 dB (9-layer) and reduce Rmin from 0.40 to 0.25. Furthermore, the 9-layer composite exhibits approximately 75 dB SE in 1-18 GHz, simultaneously realizing high efficiency, low reflectivity, and broadband shielding. Notably, its excellent conductivity also provides reliable Joule heating performance. The shielding and thermal features of the composite highlight its potential in construction and smart housing heating applications.

开发低成本、低反射(r值)、高屏蔽效率的生物质电磁干扰(EMI)屏蔽材料是有前景的,但也具有挑战性。受千费耶交替结构的启发,我们提出了导电层和磁性层交替组装的方法。以可持续竹纤维(BF)和可生物降解聚乳酸(PLA)为原料,分别用镀铜BF (Cu@BF)和镀铁BF (Fe@BF)与PLA复合制备磁性和导电层。通过磁性层和导电层交替叠加,然后进行热压,获得了具有“多(吸收-反射-重吸收)”结构的高电磁干扰SE和低r值生物质多层复合材料。研究了不同交替层(3/5/7/9层)的性能,发现层数、SE和r值之间存在线性相关关系。结果表明,增加交替层数可以很容易地将x波段的SE从45.02 dB(3层)调整到80.2 dB(9层),并将Rmin从0.40降低到0.25。此外,9层复合材料在1-18 GHz范围内的SE约为75 dB,同时实现了高效率、低反射率和宽带屏蔽。值得注意的是,其优异的导电性也提供了可靠的焦耳加热性能。复合材料的屏蔽和热特性突出了其在建筑和智能住宅供暖应用中的潜力。


Composites Science and Technology

Mussel-Inspired Structure based CsPbBr3/Aramid Nanofiber Composite Film for Lightweight, Flexible and Superior X-ray Shielding

Zizhan Guo, Zhaoqing Lu, Guoqiang Peng, Jingru Zhang, Li Hua, Fengfeng Jia, Jiayue Dong, Qijun Li, Haoxu Wang, Zhiwen Jin

doi:10.1016/j.compscitech.2024.110700

 

基于贻贝启发结构的CsPbBr3/芳纶纳米纤维复合薄膜,用于轻质、柔性和卓越的x射线屏蔽

Excessive exposure to X-rays risks human health and the proper functioning of precision instruments. Conventional materials have high atomic numbers, but their unsatisfactory mechanical properties hinder commercial application. Currently, X-ray shielding materials must fulfill the characteristics of high strength, lightweight, flexibility, high shielding efficiency, and low secondary radiation to alleviate urgent radiation risks. Here, this work introduces a mussel-inspired structure into the construction of the lightweight and flexible CsPbBr3/aramid nanofiber (ANF) composite films to enhance the ability of X-ray absorption. The CsPbBr3 provides effective X-ray shielding in millimeter thickness and addresses the challenge of absorption zone matching by containing both Cs and Pb elements. The interlayer reflection caused by the mussel-inspired structure increases the photon travel distance in the film, which synergizes with the absorption of X-rays by the elements, significantly improving shielding performance and weakening secondary radiation. The CsPbBr3/ANF composite film with 60 wt% CsPbBr3 content demonstrates robust tensile stress (57.6 MPa), lightweight (0.87 g/cm3), superior heat resistance, exceptional flexibility with a notable mass attenuation coefficient (58.2-65.6 cm2/g in the 20-70 kV range), which is much higher than Pb plate. Considering its comprehensive performance advantages, the CsPbBr3/ANF composite film significantly impacts the landscape of X-ray shielding.

过度暴露于x射线会危及人体健康和精密仪器的正常工作。传统材料原子序数高,但力学性能不理想,阻碍了其商业应用。当前,x射线屏蔽材料必须具备高强度、轻量化、柔韧性、高屏蔽效率、低二次辐射等特点,才能缓解迫在眉睫的辐射风险。在这里,本研究将贻贝启发的结构引入到轻质柔性CsPbBr3/芳纶纳米纤维(ANF)复合薄膜的构建中,以增强x射线吸收能力。CsPbBr3在毫米厚度上提供了有效的x射线屏蔽,并通过同时含有Cs和Pb元素来解决吸收区匹配的挑战。贻贝启发结构引起的层间反射增加了光子在薄膜中的传播距离,与元件对x射线的吸收协同作用,显著提高了屏蔽性能,减弱了二次辐射。CsPbBr3含量为60 wt%的CsPbBr3/ANF复合薄膜具有抗拉应力(57.6 MPa)、重量轻(0.87 g/cm3)、耐热性好、柔韧性好、质量衰减系数显著(20-70 kV范围内58.2-65.6 cm2/g),远高于铅板。考虑到CsPbBr3/ANF复合薄膜的综合性能优势,其对x射线屏蔽的影响是显著的。


Functionalization of Calcium-Deficient Nanohydroxyapatite Improves the Mechanical Properties of 3D Printed Biopolymer Nanocomposites

Dibakar Mondal, Thomas L. Willett

doi:10.1016/j.compscitech.2024.110707

 

缺钙纳米羟基磷灰石功能化改善3D打印生物聚合物纳米复合材料的力学性能

Agglomerations of nanoparticles in a polymer matrix can drastically reduce the mechanical properties of a polymer nanocomposite, especially its strength. The grafting of nanoparticle surfaces with suitable functional groups can provide improved dispersion and stronger interfacial bonding, improving the fracture resistance of the nanocomposite. In this study, calcium-deficient nanohydroxyapatite (nHA) particles were functionalized with an amino acid-based urethane methacrylate (lysine urethane methacrylate, LUM) and subsequently reacted with hydroxyethyl methacrylate. We mixed these functionalized nHA particles with resin, composed of methacrylated acrylated epoxidized soybean oil, methacrylated isosorbide, and triethylene glycol dimethacrylate, and 3D-printed nanocomposites using masked stereolithography. We hypothesized that the functionalized nanoparticles would enhance the mechanical performance of the 3D-printed nanocomposites due to the greater dispersion and stronger interface. Flexural, tensile, compression and Mode-I fracture toughness test specimens were fabricated using a mSLA printer and tested following ASTM standards. The LUM functionalization of nHA improved the dispersion and increased the viscosity of the uncured nanocomposite ink. The flexural fracture strength, yield strength, and mode-I fracture toughness values were increased by 10%, 30%, and 11%, respectively. The LUM improved the strength and fracture toughness by providing a stronger, more stable interface, resisting debonding between the matrix and particles, allowing for greater plastic deformation.

纳米颗粒在聚合物基体中的聚集 会大大降低聚合物纳米复合材料的机械性能,尤其是其强度。通过在纳米粒子表面接枝合适的官能团,可以改善纳米复合材料的分散性,增强界面键合,从而提高纳米复合材料的抗断裂性能。在这项研究中,缺钙的纳米羟基磷灰石(nHA)颗粒被氨基酸基甲基丙烯酸氨基酯(赖氨酸甲基丙烯酸氨基酯,LUM)功能化,随后与甲基丙烯酸羟乙酯反应。我们将这些功能化的nHA颗粒与树脂混合,树脂由甲基丙烯酸酯、甲基丙烯酸酯环氧大豆油、甲基丙烯酸酯异山梨酯和三聚乙二醇二甲基丙烯酸酯组成,并使用屏蔽立体光刻技术3d打印纳米复合材料。我们假设功能化的纳米颗粒由于更大的分散性和更强的界面而增强了3d打印纳米复合材料的力学性能。使用mSLA打印机制作弯曲、拉伸、压缩和i型断裂韧性试样,并按照ASTM标准进行测试。nHA的LUM功能化改善了未固化纳米复合油墨的分散性,提高了其粘度。弯曲断裂强度、屈服强度和i型断裂韧性值分别提高了10%、30%和11%。LUM通过提供更强、更稳定的界面,抵抗基体和颗粒之间的脱粘,从而提高了强度和断裂韧性,允许更大的塑性变形。


Three-dimensional woven structural electromagnetic composite metamaterial with lightweight, anti-delaminate and in-phase reflection properties

Wuzhou Li, Kun Zhang, Rui Pei, Fujun Xu

doi:10.1016/j.compscitech.2024.110708

 

三维编织结构电磁复合超材料,具有轻质、抗分层、同相反射等特性

Electromagnetic metamaterials are capable of tuning or controlling the transmission of the electromagnetic waves to realize high-performance microwave devices. However, the poor mechanical properties caused by the multi-layer structure limited its wide applications, especially in aircraft, satellites or high-speed vehicles. In this study, an electromagnetic metamaterial with in-phase reflection property was integrated into the three-dimensional (3D) woven composite to achieve the combination of unique electromagnetic properties and excellent mechanical properties on multi-functional composites. The 3D electromagnetic composite metamaterial was capable of reflecting electromagnetic waves from the antenna back lobe to the main lobe at 0° phase, resulting in the bandwidth of the test antenna increased from 0.6 GHz to 1.2 GHz, and the gain increased from 2.8 dB to 4.8 dB, an increase of 71.4%. Owing to the tight physical bonding of binder yarn, 3D electromagnetic composite metamaterial exhibited excellent anti-delaminate performance and stable electromagnetic properties in 28 J impact. The impact damage threshold energy of the 3D electromagnetic composite metamaterial was significantly increased from 10 J to 30 J.

电磁超材料能够调节或控制电磁波的传输,从而实现高性能的微波器件。然而,由于多层结构导致的力学性能差,限制了其广泛应用,特别是在飞机、卫星或高速车辆上。本研究将一种具有同相反射特性的电磁超材料集成到三维编织复合材料中,实现了多功能复合材料独特的电磁性能与优异的力学性能的结合。三维电磁复合超材料能够在0°相位将天线后瓣的电磁波反射到主瓣,使测试天线的带宽从0.6 GHz提高到1.2 GHz,增益从2.8 dB提高到4.8 dB,提高了71.4%。由于粘结纱的紧密物理结合,三维电磁复合超材料在28j冲击下表现出优异的抗分层性能和稳定的电磁性能。三维电磁复合超材料的冲击损伤阈值能量由10 J显著提高到30 J。



来源:复合材料力学仿真Composites FEM
ACTMechanicalSystemInspireAbaqus断裂复合材料非线性航空航天汽车建筑理论材料机器人控制曲面
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-11-20
最近编辑:1天前
Tansu
签名征集中
获赞 3粉丝 0文章 690课程 0
点赞
收藏
作者推荐

【新文速递】2024年5月22日复合材料SCI期刊最新文章

今日更新:Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 4 篇,Composites Science and Technology 1 篇Composites Part A: Applied Science and ManufacturingSynchrotron X-ray microtomography and finite element modelling to uncover flax fibre defect’s role in tensile performancesDelphine Quereilhac, Emmanuel De Luycker, Sofiane Guessasma, Marwa Abida, Jonathan Perrin, Timm Weitkamp, Alain Bourmaud, Pierre Ouagnedoi:10.1016/j.compositesa.2024.108276同步加速器x射线微断层扫描和有限元建模揭示亚麻纤维缺陷在拉伸性能中的作用Flax fibres offer performance capabilities comparable to glass fibres, thereby enhancing their potential in the biobased composites industry. However, these fibres have morphological defects affecting their mechanical features. In the present work, flax elementary fibres geometries with defects assessed by synchrotron X-ray microtomography were meshed to simulate a tensile test using finite element analysis. For the first time, the distribution of stresses in the vicinity of defects is revealed. The geometrical irregularities at the surface of the fibre and the delamination of cellulose layers within fibre cell wall turned out to concentrate stress up to 7.5 times compared to defect-free regions. These results demonstrate why flax fibres cannot reach their full potential in comparison to what could be expected from a structure mainly constituted from crystalline cellulose microfibrils, and why fracture in a composite is likely to initiate in those defect zones.亚麻纤维提供与玻璃纤维相当的性能,从而增强了其在生物基复合材料行业的潜力。然而,这些纤维具有影响其机械特性的形态缺陷。在目前的工作中,用同步加速器x射线微断层扫描评估了亚麻初级纤维的几何形状,并用有限元分析模拟了拉伸试验。首次揭示了缺陷附近的应力分布。纤维表面的几何不规则性和纤维细胞壁内纤维素层的分层使应力集中程度达到无缺陷区域的7.5倍。这些结果表明,与主要由结晶纤维素微原纤维构成的结构相比,为什么亚麻纤维不能充分发挥其潜力,以及为什么复合材料中的断裂很可能在这些缺陷区域开始。Composites Part B: Engineering4D printing of cellular silicones with negative stiffness effect for enhanced energy absorption and impact protectionXiaoyan Liu, Yaling Zhang, Yu Su, Chengzhen Geng, Yu Liu, Jiangping He, Ai Ludoi:10.1016/j.compositesb.2024.111561具有负刚度效应的多孔硅树脂的4D打印,增强能量吸收和冲击防护Cellular silicone foams are renowned for their exceptional flexibility, ultra-elasticity, and durability, which have gained significant attentions in diverse applications. However, manufacturing porous silicone foams featuring substantial bending curvatures and customized mechanical properties remain a challenge. Herein, this work presents a new strategy for manufacturing curved porous silicone foams with both 4D printed bending curvature and tailored meta-mechanical properties. The foam is achieved by direct ink writing of composite silicone inks embedded with thermal expandable microspheres as foaming agents. The work studied in detail the thermal expansion of microspheres, foaming of composite silicone inks, as well as properties of the expanded foam. Utilizing the strain mismatch under thermal stimuli, the printed bilayer structures achieved shape-shifting. Additionally, silicones composed of stacked bilayer filaments exhibited negative stiffness properties under compression, leading to enhanced energy absorption capacity, which can be fine-tuned through different printing structural designs, demonstrating its potential in fields such as energy dissipation and shock absorption while protecting objects with curved shapes.多孔硅胶泡沫以其卓越的柔韧性、超弹性和耐用性而闻名,在各种应用中得到了极大的关注。然而,制造具有大量弯曲曲率和定制机械性能的多孔硅胶泡沫仍然是一个挑战。在这里,这项工作提出了一种制造具有4D打印弯曲曲率和定制元力学性能的弯曲多孔泡沫硅的新策略。泡沫是通过嵌入热膨胀微球作为发泡剂的复合硅树脂墨水的直接墨水书写实现的。本文详细研究了微球的热膨胀、复合硅树脂油墨的发泡以及膨胀泡沫的性能。利用热刺 激下的应变失配,打印的双层结构实现了变形。此外,由堆叠的双层长丝组成的有机硅在压缩下表现出负刚度特性,从而增强了能量吸收能力,可以通过不同的印刷结构设计进行微调,从而展示了其在能量耗散和减震等领域的潜力,同时保护具有弯曲形状的物体。Micromechanics stiffness upscaling of plant fiber-reinforced compositesMarkus Königsberger, Valentin Senk, Markus Lukacevic, Michael Wimmer, Josef Füssldoi:10.1016/j.compositesb.2024.111571植物纤维增强复合材料的微力学刚度提升Fiber-reinforced green composites made from natural plant fibers are an increasingly popular sustainable alternative to conventional high-performance composite materials. Given the variety of natural fibers themselves, and the even larger variety of possible composites with specific fiber dosage, fiber orientation distribution, fiber length distribution, and fiber-matrix bond characteristics, micromechanics-based modeling is essential for characterizing the macroscopic response of these composites. Herein, an analytical multiscale micromechanics model for elastic homogenization is developed, capable of capturing the this variety. The model features (i) a nanoscopic representation of the natural fibers to predict the fiber stiffness from the universal stiffness of the fiber constituents, mainly cellulose, (ii) a spring-interface model to quantify the compliance of the fiber-matrix bond, and (iii) the ability to model any (and any combination of) orientation distribution and aspect ratio distribution. Validation is performed by comparing the predicted stiffness to experimental results for as many as 73 composites available in the literature. Extensive sensitivity analyses quantify the composite stiffening upon increasing fiber volume fraction, fiber alignment, fiber length, and fiber-matrix interface stiffness, respectively.由天然植物纤维制成的纤维增强绿色复合材料是一种越来越受欢迎的可持续替代传统高性能复合材料。考虑到天然纤维本身的多样性,以及具有特定纤维用量、纤维取向分布、纤维长度分布和纤维-基质结合特性的更多种类的可能复合材料,基于微观力学的建模对于表征这些复合材料的宏观响应至关重要。本文建立了弹性均匀化的多尺度细观力学分析模型,能够捕捉到这种变化。该模型的特点是:(1)天然纤维的纳米级表征,通过纤维成分(主要是纤维素)的普遍刚度来预测纤维的刚度;(2)弹簧界面模型,量化纤维-基质键的顺应性;(3)模拟任何(以及任何组合)取向分布和纵横比分布的能力。通过比较文献中多达73种复合材料的预测刚度和实验结果来进行验证。广泛的敏感性分析量化了复合材料在增加纤维体积分数、纤维排列、纤维长度和纤维-基体界面刚度时的刚度。Interlaminar reinforced carbon fiber/epoxy composites by electrospun ultrafine hybrid fibersYuzhe Huang, Xujin Lv, Hongyu Huo, Baoyan Zhang, Gongqiu Peng, Jing Ge, Han Guo, Yong Liudoi:10.1016/j.compositesb.2024.111578静电纺超细混杂纤维层间增强碳纤维/环氧复合材料The demand for high-strength composites in the aerospace industry is increasing; however, their low-impact resistance poses a danger to aircraft. Consequently, significant attention has been devoted to researching the interlaminar toughening of carbon fiber-epoxy composite laminates, focusing on electrospun fibers due to their high porosity and specific surface area. Our previous work explored the potential of poly(aryl ether nitrile) as an interlaminar toughening option. Nonetheless, these materials exhibited a decline in flexural properties. To address this concern, we developed poly(arylene ether nitrile)-poly(ε-caprolactone) ultrafine hybrid fiber membranes via electrospinning to enhance the interlaminar performance of composite laminates. The interlaminar fracture toughness demonstrated a remarkable improvement of 132.5%. Additionally, the flexural strength in-creased by at least 12.3%, while the flexural modulus experienced a minimum in-crease of 17.9%. The interlaminar shear strength improved by approximately 27%-28%, and the impact strength increased by 99.2%. This study demonstrates the significant potential of electrospun hybrid fiber membranes in improving the interlaminar properties of carbon fiber-epoxy composite laminates, con-tributing to developing safer and more durable materials for the aerospace industry.航空航天工业对高强度复合材料的需求日益增加;然而,它们的低抗冲击性对飞机构成了危险。因此,碳纤维-环氧复合材料层间增韧的研究受到了广泛的关注,其中以电纺丝纤维为重点,因为其具有较高的孔隙率和比表面积。我们之前的工作探索了聚芳醚腈作为层间增韧选择的潜力。尽管如此,这些材料表现出弯曲性能的下降。为了解决这一问题,我们采用静电纺丝法制备了聚(芳醚腈)-聚(ε-己内酯)超细杂化纤维膜,以提高复合层压板的层间性能。层间断裂韧性显著提高132.5%。此外,抗弯强度至少增加了12.3%,而抗弯模量最小增加了17.9%。层间抗剪强度提高约27% ~ 28%,冲击强度提高99.2%。这项研究证明了静电纺混合纤维膜在改善碳纤维-环氧复合材料层间性能方面的巨大潜力,有助于为航空航天工业开发更安全、更耐用的材料。Preparation, Cure, Characterization, and Mechanical Properties of Reactive Flame-Retardant Cyanate Ester/Epoxy Resin Blends and Their Carbon Fiber Reinforced CompositesMustafa Mukhtar, Donald Klosterman, Alexander B. Morgandoi:10.1016/j.compositesb.2024.111580反应性阻燃氰酸酯/环氧树脂共混物及其碳纤维增强复合材料的制备、固化、表征和力学性能This study explores the formulation space of flame retardant thermoset polymers, specifically involving blends of epoxy and cyanate ester (EP/CE) and a reactive phosphorus-based flame retardant, poly (m-phenylene methylphosphonate) (PMP). Two CE monomers were investigated, each blended with the same epoxy monomer (DGEBA) in a 1:1 weight ratio. The impact of phosphorus concentration on the neat (neat meaning no fibers were present) resin blends was characterized using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The flammability and mechanical characteristics were assessed using micro-combustion calorimetry (MCC) and dynamic mechanical analysis (DMA). Carbon fiber composite panels were successfully fabricated using a wet layup process and autoclave curing with a fiber volume fraction (Vf) of approximately 0.5. DMA testing of the cured composite laminates pinpointed that the average Tg of the EP/CE blend was reduced with PMP addition by up to 39 °C at a phosphorous level of 3 wt%. Cone calorimetry tests confirmed the effectiveness of the flame retardant by reducing the peak Heat Release Rate (HRR) by approximately 27%. The integration of PMP into EP/CE only marginally reduced the 3-point flexural strength (6–15%) and modulus (7–13%) relative to baseline samples.本研究探索了阻燃热固性聚合物的配方空间,特别是涉及环氧树脂和氰酸酯(EP/CE)的共混物和活性磷基阻燃剂聚(间苯甲基膦酸酯)(PMP)。研究了两种CE单体,每一种都与相同的环氧单体(DGEBA)以1:1的重量比共混。采用差示扫描量热法(DSC)和热重分析(TGA)表征了磷浓度对纯树脂共混物(纯意味着没有纤维存在)的影响。采用微燃烧量热法(MCC)和动态力学分析(DMA)对其可燃性和力学特性进行了评价。采用湿法铺层和高压灭菌法成功制备了碳纤维复合材料板,纤维体积分数(Vf)约为0.5。固化复合材料层压板的DMA测试表明,在磷含量为3wt %的情况下,添加PMP可使EP/CE共混物的平均Tg降低高达39°C。锥形量热法测试通过将峰值热释放率(HRR)降低约27%,证实了阻燃剂的有效性。与基线样品相比,PMP与EP/CE的整合只略微降低了三点抗弯强度(6-15%)和模量(7-13%)。Composites Science and TechnologyBone osteon-like structures: a biomimetic approach towards multiscale fiber-reinforced composite structuresAlessandro Stagni, Giacomo Trevisan, Laura Vergani, Flavia Libonatidoi:10.1016/j.compscitech.2024.110669骨类骨结构:多尺度纤维增强复合材料结构的仿生方法Natural materials show astonishing mechanical properties, despite their rather poor building blocks. This counterintuitive behavior can be traced back to their hierarchical organization that enhances the properties of the building blocks. A classic example is bone: lightweight, stiff, strong, yet tough. This property combination is attributed particularly to the microstructure, where osteons deflect and arrest cracks. In this work, we mimic the bone microstructure with fiber-reinforced composites: we perform a numerical parametric study, by varying the layup of the osteon-like structures (OLS) and interconnecting layers representing the interstitial bone lamellae, and we manufacture and test single OLS as proof of concept. Results show the key role of OLS and interconnecting layers in deflecting and arresting cracks, whereas the combination of diverse materials affects the elastic properties. Finally, the introduction of hollow OLS, not affecting fracture toughness, might be used to expand the material functionality, paving the way toward novel multifunctional composites.天然材料表现出惊人的机械性能,尽管它们的组成成分相当差。这种违反直觉的行为可以追溯到它们的分层组织,这种组织增强了构建块的属性。一个典型的例子是骨头:轻、硬、强、韧。这种性能组合特别归因于微观结构,其中骨偏转并阻止裂纹。在这项工作中,我们用纤维增强复合材料模拟骨微观结构:我们进行了数值参数研究,通过改变骨样结构(OLS)的堆叠和代表间隙骨片的互连层,我们制造和测试了单个OLS作为概念证明。结果表明,OLS和连接层在偏转和止裂中起关键作用,而不同材料的组合影响弹性性能。最后,在不影响断裂韧性的情况下,引入空心OLS可用于扩展材料的功能,为新型多功能复合材料铺平道路。来源:复合材料力学仿真Composites FEM

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈