今日更新:International Journal of Solids and Structures 1 篇,Thin-Walled Structures 4 篇
An energy-based effective constitutive model for a family of planar chiral lattice structures
Anirvan DasGupta
doi:10.1016/j.ijsolstr.2024.112919
一类平面手性晶格结构基于能量的有效本构模型
A novel energy based approach to determine the effective properties of periodic lattice structures is proposed. A Sinusoidal Tetra-Chiral Lattice (STCL) structure, composed of uniform slender sinusoidal beams, is considered and analyzed. The geometry is defined by four lattice parameters, which can be tuned to generate structures with L4 (regular) or L2 (irregular) symmetry axis. Using an irreducible periodic element and Castigliano’s theorem, an analytical micromechanics based effective constitutive model is developed. The assembly conditions at the boundaries of the periodic element provide the requisite constraints required to develop the strain–displacement relations, which are then used to obtain a quadratic strain energy density function. Analytical expressions of the effective material properties in the compliance tensor are obtained using a truncated expansion of the energy integrals under some smallness assumption, which shows an excellent match with the numerical results obtained without the smallness assumption. A major advantage of the proposed approach is the direct determination of the effective properties in a unified manner. The results from the analytical calculations are compared against numerical results obtained using Finite Element Analysis (FEA) for various members of the STCL geometry. A novel method for accurately determining the compliance tensor elements from the FEA results is also proposed. The results obtained from the different methods are found to be in very good match. The effect of orientation of the lattice on the effective properties is also studied and some interesting features of auxeticity and stiffness are clearly brought out. It is found that auxeticity of the lattice and the effective elastic modulus can be increased simultaneously in certain directions.
本文提出了一种基于能量的新方法来确定周期性晶格结构的有效特性。本文考虑并分析了由均匀细长正弦梁组成的正弦四手性晶格(STCL)结构。几何形状由四个晶格参数定义,通过调整这些参数可生成具有 L4(规则)或 L2(不规则)对称轴的结构。利用不可还原周期元素和 Castigliano 定理,建立了一个基于微观力学的有效构成分析模型。周期元素边界的装配条件为建立应变-位移关系提供了必要的约束条件,然后利用这些条件获得二次应变能密度函数。在一些微小性假设条件下,使用能量积分的截断扩展,可以获得顺应张量中有效材料特性的分析表达式,这与不使用微小性假设条件下获得的数值结果非常吻合。所提方法的一个主要优点是能以统一的方式直接确定有效特性。分析计算的结果与使用有限元分析(FEA)获得的 STCL 不同几何构件的数值结果进行了比较。此外,还提出了一种从有限元分析结果中准确确定顺应张量元素的新方法。不同方法得出的结果非常吻合。此外,还研究了晶格取向对有效特性的影响,并明确提出了辅助性和刚度的一些有趣特征。研究发现,在某些方向上,晶格的辅助eticity 和有效弹性模量可以同时增加。
Deformation behavior and failure mechanism of AA7075 alloy during the cryogenic temperature-assisted incremental sheet forming process
Yanle Li, Feifei Liu, Jiyu Du, Tingyu Ge, Vladimir V. Mironenko, Fangyi Li
doi:10.1016/j.tws.2024.112114
AA7075合金在低温辅助渐进板成形过程中的变形行为及破坏机制
High-strength aluminum alloys are potential structural materials for thin-walled aerospace and automotive components. However, the limited formability at room temperature (RT) hinders their wide industrial application. In this study, a cryogenic temperature-assisted incremental sheet forming (CT-ISF) process for manufacturing 3D curved thin-walled structures was proposed. An experimental platform for CT-ISF was established to form AA7075 alloys. We found that the formability of the solution-treated AA7075 alloy sheet was greatly improved under the cryogenic environment without sacrificing its strength. In combination with double pass forming process, the formability of the sheet can be further improved. The stable deformation of the sheet is promoted due to the suppression of the Portevin-Le Chatelier (PLC) effect at CT, which reduces axial force fluctuations during the forming process. The line roughness value of the meridional direction was reduced by 36.8% at CT due to the enhanced work-hardening and the utilization of MoS2 lubricant. In terms of microstructural evolution, we found that the fracture morphology of the formed parts changed from tensile fracture at RT to shear fracture at CT. The improved formability was attributed to increased Goss and E texture contents, delay in dislocation evolution, and suppression of the PLC effect. This work introduces a novel CT-ISF process that significantly enhances the formability of high-strength Al alloy. In particular, it unravels the enhancement mechanism of formability in the CT-ISF process, providing theoretical support for further research.
高强度铝合金是薄壁航空航天和汽车零部件的潜在结构材料。然而,室温下有限的成形性阻碍了其广泛的工业应用。在这项研究中,提出了一种用于制造三维弯曲薄壁结构的低温辅助增量板成形(CT-ISF)工艺。建立了CT-ISF成形AA7075合金的实验平台。结果表明,在低温环境下,固溶处理的AA7075合金板材在不牺牲强度的情况下,成形性能得到了很大的改善。与双道成形工艺相结合,可进一步提高板材的成形性。由于抑制了CT处的波特文-勒夏特列(PLC)效应,促进了板料的稳定变形,减少了成形过程中的轴向力波动。由于加工硬化的增强和MoS2润滑剂的使用,经向线粗糙度值在CT下降低了36.8%。在显微组织演化方面,我们发现成形件的断口形貌由室温下的拉伸断裂转变为室温下的剪切断裂。可成形性的提高是由于Goss和E织构含量的增加、位错演化的延迟和PLC效应的抑制。本文介绍了一种新型的CT-ISF工艺,该工艺显著提高了高强度铝合金的成形性。特别是揭示了CT-ISF过程中成形性增强的机理,为进一步研究提供了理论支持。
Analytical solutions and material tailoring for combined radial expansion and twisting of functionally graded orthotropic hollow cylinders
Guojun Nie, R.C. Batra
doi:10.1016/j.tws.2024.112115
功能梯度正交各向异性空心圆筒径向膨胀和扭转组合的解析解和材料裁剪
Assuming that material properties are described by the same function of the radius, we first analytically find the displacement field in a functionally graded, orthotropic and linearly elastic hollow cylinder undergoing combined radial expansion and twisting. Subsequently, either for a desired axisymmetric displacement field or a stress distribution, we determine the required variations of the material properties to produce them in an inhomogeneous orthotropic cylinder. Numerical results presented for four example problems reveal the possibility of suitably varying material properties in the radial direction to simultaneously minimize the structural mass and the maximum circumferential stress on the inner surface of a hollow cylinder. It is found that out of the three heterogeneous cylinders of the same geometric and material parameters, the one having the least mass also has the smallest value of the maximum circumferential stress on the cylinder's inner surface. It occurs when the material moduli essentially vary affinely through the cylinder thickness. The analytical solutions presented here can serve as benchmarks for others to verify their numerical algorithms.
假设材料性能用相同的半径函数来描述,首先解析求出一个功能梯度、正交各向异性和线弹性空心圆柱体在径向膨胀和扭转联合作用下的位移场。随后,对于理想的轴对称位移场或应力分布,我们确定了在非均匀正交各向异性圆柱体中产生它们所需的材料特性变化。四个算例的数值结果揭示了在径向上适当改变材料性能以同时使空心圆柱体的结构质量和内表面的最大周向应力最小化的可能性。结果表明,在具有相同几何参数和材料参数的三个非均质圆柱体中,质量最小的圆柱体内表面的最大周向应力值也最小。当材料模量基本上通过圆柱体厚度仿射变化时,就会发生这种情况。本文给出的解析解可以作为验证其数值算法的基准。
Nonlinear flutter analysis of SMAHC beams under thermo-fluid-solid coupling field
Fusong Jin, Gang Xu, Jianghong Xue
doi:10.1016/j.tws.2024.112116
热流固耦合场下SMAHC梁的非线性颤振分析
The shape memory alloy (SMA) driven composite laminated structure is widely employed in the variable geometry wings of aircraft. This paper utilizes a theoretical and numerical simulation approach to analyze the dynamic characteristics of a high-speed motion SMA-hybrid composite(SMAHC) laminated beam under the influence of temperature loads. Under the coupled action of temperature and aerodynamic loads, the nonlinear characteristics of vibration in the SMAHC laminated beam are pronounced. Considering Von-Karman nonlinear geometric relations and modeling aerodynamic loads using the first-order piston theory, the nonlinear vibration equations of the SMAHC laminated beam are derived through the Hamiltonian principle. The Newmark-β method is then applied to solve these equations, revealing the dynamic characteristics of the SMAHC laminated beam in relation to aerodynamic loads, shape memory alloy temperature, and position. The results are compared with previous studies, validating their reliability. The findings indicate that in a linear system, with increasing aerodynamic loads, the first two frequencies of the SMAHC laminated beam coincide, leading to transverse vibration divergence and structural damage. However, in a nonlinear system, as aerodynamic loads increase, the first two frequencies of the SMAHC laminated beam do not coincide and exhibit nonlinear saturation, the higher the temperature of the SMA fibers, the more likely nonlinear saturation phenomena are to occur. Further increasing aerodynamic loads excites additional frequencies, resulting in chaotic vibrations. The research results provide a theoretical basis for the stability analysis of intelligent composite material structures during high-speed operation.
形状记忆合金驱动的复合材料层合结构广泛应用于飞机变几何翼中。本文采用理论和数值模拟相结合的方法,分析了温度荷载作用下高速运动sma -混杂复合材料层合梁的动态特性。在温度和气动载荷的耦合作用下,SMAHC层合梁的振动具有明显的非线性特征。考虑Von-Karman非线性几何关系,采用一阶活塞理论对气动载荷进行建模,利用哈密顿原理推导了SMAHC层合梁的非线性振动方程。采用Newmark-β方法求解这些方程,揭示了SMAHC层合梁的动态特性与气动载荷、形状记忆合金温度和位置的关系。结果与前人的研究结果进行了比较,验证了其可靠性。研究结果表明:在线性系统中,随着气动载荷的增大,SMAHC叠合梁的前两个频率重合,导致横向振动发散和结构损伤;然而,在非线性系统中,随着气动载荷的增加,SMA纤维层合梁的前两个频率不重合,呈现非线性饱和,SMA纤维温度越高,越容易出现非线性饱和现象。进一步增加气动载荷会激发额外的频率,导致混沌振动。研究结果为智能复合材料结构高速运行时的稳定性分析提供了理论依据。
A size-dependent electro-mechanical buckling analysis of flexoelectric cylindrical nanoshells
Wei Wang, Qianshou Qi, Junlin Zhang, Zikan Wang, Jiabin Sun, Zhenhuan Zhou, Xinsheng Xu
doi:10.1016/j.tws.2024.112118
柔性电圆柱形纳米壳的机电屈曲分析
In this paper, a buckling analysis for flexoelectric cylindrical nanoshells under axial compression is performed by considering the higher-order shear deformation theory and non-uniform pre-buckling deformation. Size-dependent critical buckling stresses and buckling mode shapes are obtained by the Galerkin's method with newly proposed displacement functions. Numerical results are compared with existing solutions and excellent agreements are observed. Furthermore, a comprehensive parametric study of boundary conditions, geometrical parameters and applied electric voltage is carried out to reveal the influence of flexoelectric effect on the size-dependent buckling characteristics of flexoelectric cylindrical nanoshells.
本文考虑高阶剪切变形理论和非均匀预屈曲变形,对挠性电圆柱纳米壳在轴向压缩下的屈曲进行了分析。利用新提出的位移函数,用伽辽金方法得到了与尺寸相关的临界屈曲应力和屈曲模态振型。数值计算结果与已有解进行了比较,结果非常吻合。此外,通过对边界条件、几何参数和外加电压的综合参数化研究,揭示了挠曲电效应对挠曲电圆柱纳米壳尺寸相关屈曲特性的影响。