今日更新:Composites Part A: Applied Science and Manufacturing 4 篇,Composites Part B: Engineering 1 篇,Composites Science and Technology 1 篇
Strategy for a high thermal conductivity and low thermal resistance under compression of oriented carbon fiber with spherical alumina thermal interface material
Fei Huang, Wen Yue, Wenbo Qin, Dengfeng Shu, Jiachen Sun, Jiansheng Li, Dezhong Meng, Chengbiao Wang
doi:10.1016/j.compositesa.2024.108312
球形氧化铝热界面材料取向碳纤维的高导热低热阻压缩策略
Thermal pads prepared with pitch-based carbon fibre (CF) orientation have garnered widespread attention due to their generally higher through-plane thermal conductivity. However, these thermal pads must undergo compression during the assembly process. When the compression exceeds a certain threshold, the orientation degree of the CFs inside the thermal pad can change, leading to a reduction in thermal conductivity. In this study, spherical alumina and CF were utilized to optimize thermal transfer stability under compression. The results demonstrate that the composites can still maintain efficient and stable heat transfer even when compressed by 25 %, which represents a more than 60 % improvement compared to pure CF-oriented composites. Furthermore, the relative motion between spherical alumina and CF, driven by their significant morphological differences, enhances the degree of CF orientation during the orientation process. With only 11.8 wt% CF loading, the composite achieved an impressive through-plane thermal conductivity of up to 20.4 W·m−1·K−1.
沥青基碳纤维(CF)取向热垫由于其普遍具有较高的通平面导热性而受到广泛关注。然而,这些热垫必须经过压缩在组装过程中。当压缩超过一定阈值时,热垫内部的碳纤维取向程度会发生变化,导致导热系数降低。在本研究中,利用球形氧化铝和CF来优化压缩下的传热稳定性。结果表明,即使压缩25% %,复合材料仍能保持高效稳定的传热,与纯cf取向复合材料相比,提高了60% %以上。此外,球形氧化铝和CF之间的相对运动在其显著的形态差异的驱动下,增强了CF在取向过程中的取向程度。当CF载荷为11.8 wt%时,该复合材料的通面导热系数高达20.4 W·m−1·K−1。
Utilizing the oxidation defects of black phosphorus to reduce and stabilize copper(I) molybdate for achieving flame retardancy and smoke suppression of polycarbonate composites
Jiajun Li, Bin Zou, Xin Wang, Zhenfeng Cheng, Tianmo Yang, Yuan Hu
doi:10.1016/j.compositesa.2024.108313
利用黑磷的氧化缺陷还原和稳定钼酸铜,实现聚碳酸酯复合材料的阻燃抑烟
The promising phosphorus-based flame retardants reduce thermal hazards while increasing non-thermal hazards. This work utilizes the oxidative defects of black phosphorus, which can synchronously reduce and stabilize copper(I) molybdate while introducing surface modification with sodium alginate in an environmentally friendly ball milling process to enhance dispersibility. Firstly, the T5% and Tmax of PC/BP@CM@SA (2 wt%) increase 9.5 °C and 8 °C under nitrogen. Secondly, the UL-94 V0 was achieved and the peak heat release rate, total heat release, and total smoke release decreased by 44.0 %, 22.1 %, and 17.0 % respectively. The char layer doubled in height compared to the neat sample, while its graphitization degree decreased from 2.38 to 2.14. In short, this is largely attributable to the catalytic action and physical barrier effect of BP@CM@SA. This study provides a way for the balance between reducing thermal hazards and increasing non-thermal hazards of phosphorus-based flame retardants such as black phosphorus.
有前途的磷系阻燃剂在减少热危害的同时增加了非热危害。本研究利用黑磷的氧化缺陷,可以同步还原和稳定钼酸铜,同时在环境友好的球磨工艺中引入海藻酸钠表面改性,以提高分散性。首先,在氮气作用下,PC/BP@CM@SA(2 wt%)的T5%和Tmax分别提高了9.5 °C和8 °C。其次,达到UL-94 V0,峰值放热率、总放热率和总排烟率分别下降44.0% %、22.1% %和17.0% %。炭层高度比纯样增加了一倍,石墨化度由2.38降至2.14。总之,这在很大程度上是由于BP@CM@SA的催化作用和物理屏障作用。本研究为减少黑磷等磷系阻燃剂的热危害与增加非热危害之间的平衡提供了一条途径。
Modelling of size-dependent plasticity in polymer-based composites based on nano- and macroscale experimental results
Nathan Klavzer, Mohamed Abatour, Jérémy Chevalier, Samuel Forest, Thomas Pardoen
doi:10.1016/j.compositesa.2024.108309
基于纳米和宏观尺度实验结果的聚合物基复合材料尺寸依赖性塑性建模
A number of experimental evidences indicate that the local response of polymer matrices near fibres is inadequately represented by classical continuum models relying on the bulk polymer behaviour. This results from size-dependency associated to large plastic strain gradients, complex interphase behaviour and/or changes of polymer structure. Classical multiscale models require artificial tuning of the properties to provide realistic macroscale predictions. We demonstrate that an unprecedented modelling approach based on a micromorphic theory is able to capture such size effects in long-fibre composites. The model is identified via nano digital image correlation strain fields and validated by predicting the strengthening found in transverse compression of UD composites, not captured by classical models. Micro-shear bands are properly regularised by the model, thus correctly handling the size-dependent plasticity and softening effects. The improved prediction of the strain localisation pattern in the matrix opens avenues to more accurately model interfacial failure and damage processes.
大量实验证据表明,依赖于聚合物体行为的经典连续统模型不能充分表征纤维附近聚合物基体的局部响应。这是由于与大塑性应变梯度、复杂的界面行为和/或聚合物结构变化相关的尺寸依赖性造成的。经典的多尺度模型需要人为地调整属性,以提供现实的宏观尺度预测。我们证明了一种基于微形态理论的前所未有的建模方法能够在长纤维复合材料中捕获这种尺寸效应。该模型通过纳米数字图像相关应变场进行识别,并通过预测UD复合材料横向压缩的强化来验证,这是经典模型无法捕捉到的。该模型对微剪切带进行了适当的正则化,从而正确处理了尺寸相关的塑性和软化效应。对基体中应变局部化模式的改进预测为更准确地模拟界面破坏和损伤过程开辟了道路。
Optimizing the manufacturing technology of high-strength fiber reinforced composites based on aluminophosphates
A.M. Gaifutdinov, K.A. Andrianova, L.M. Amirova, R.R. Amirov
doi:10.1016/j.compositesa.2024.108310
优化基于磷酸铝的高强纤维增强复合材料的制造工艺
Phosphate copolymers show promise for composite materials, but using polymer binders for structural composites is limited by underdeveloped manufacturing processes, resulting in low strength. This work optimized the technological process for obtaining carbon fiber reinforced plastics (CFRPs) based on aluminophosphate (AP), aluminoborophosphate (ABP), and aluminochromophosphate (ACP) binders. Carbon fiber impregnation regimes were optimized considering inorganic binders’ rheological properties, density, surface tension, and wettability. A rotary rheometer evaluated phosphate binder tack to optimize molding modes. The compaction dependency of woven phosphate binder prepregs on pressure was evaluated, selecting optimal CFRP molding modes. TGA-DSC analysis optimized phosphate binder drying and curing processes. CFRP samples with 55–58% volume AP, ACP, and ABP binders were obtained by vacuum molding, exhibiting high tensile, flexural strength and modulus. High heat resistance was shown by dynamic mechanical analysis, and thermal shock resistance evaluated by residual flexural strength change.
磷酸盐共聚物在复合材料方面表现出良好的前景,但由于制造工艺的不发达,结构复合材料的聚合物粘合剂的使用受到限制,导致其强度低。优化了以磷酸铝(AP)、硼磷酸铝(ABP)和铬磷酸铝(ACP)为粘结剂制备碳纤维增强塑料(CFRPs)的工艺流程。考虑了无机粘结剂的流变性、密度、表面张力和润湿性,对碳纤维浸渍体系进行了优化。一个旋转流变仪评估磷酸盐粘合剂粘合剂,以优化成型模式。评估了编织磷酸盐粘结剂预浸料对压力的压实依赖性,选择了最佳的CFRP成型模式。TGA-DSC分析优化了磷酸盐粘合剂的干燥和固化工艺。采用真空成型的方法制备了AP、ACP和ABP的体积为55-58%的CFRP样品,具有较高的拉伸、弯曲强度和模量。动态力学分析表明其具有较高的耐热性,通过残余弯曲强度变化评价其抗热震性。
Surface-engineered in-situ fibrillated thermoplastic polyurethane as toughening reinforcement for geopolymer-based mortar
Aniss Zaoui, Zeineb Ben Rejeb, Chul B. Park
doi:10.1016/j.compositesb.2024.111623
表面工程原位纤化热塑性聚氨酯作为地聚合物基砂浆的增韧增强材料
Geopolymer composites often exhibit severe brittle failure when subjected to tensile and flexural loads, mainly owing to their inherently ceramic-like structure. Therefore, this study aims to overcome the previously mentioned weaknesses by introducing 2 wt.% of surface-modified, in-situ fibrillated Co-PP (copolymer of polyethylene (PE) and polypropylene (PP))/thermoplastic polyurethane (TPU) blend to produce fiber-reinforced geopolymer mortars. The fiber-in-fiber Co-PP/TPU was first fabricated using spunbond, then functionalized using a mild, two-step, one-pot chemical surface modification process. A comprehensive and detailed study of the fibers’ chemical structure, morphology, and mechanical properties has been conducted. As well as their impact on the geopolymer mortars’ mechanical performances. Moreover, incorporating the modified fibers dramatically increased the flexural toughness and strength at failure of the composite, reaching up to 1600% and 280% compared to the control sample, respectively. Furthermore, the flexural modulus was improved by 2 folds. Additionally, the split tensile and compressive strength were improved by 84% and 17%, respectively. These findings and the SEM images of the fractured samples indicate the presence of several toughening mechanisms, associated with an improved matrix-fiber interface and an enhanced growth of geopolymer products around the fiber’s surface.
地聚合物复合材料在受到拉伸和弯曲载荷时往往表现出严重的脆性破坏,这主要是由于其固有的陶瓷状结构。因此,本研究旨在通过引入2 wt.%的表面改性原位纤化Co-PP(聚乙烯(PE)和聚丙烯(PP)的共聚物)/热塑性聚氨酯(TPU)共混物来生产纤维增强地聚合物砂浆,从而克服前面提到的缺点。纤维中纤维Co-PP/TPU首先采用纺粘制备,然后采用温和的两步一锅化学表面改性工艺进行功能化。对纤维的化学结构、形态和力学性能进行了全面而详细的研究。以及它们对地聚合物砂浆力学性能的影响。此外,加入改性纤维显著提高了复合材料的抗弯韧性和破坏强度,分别达到对照样品的1600%和280%。弯曲模量提高了2倍。此外,劈裂拉伸和抗压强度分别提高了84%和17%。这些发现和断裂样品的SEM图像表明,存在几种增韧机制,与改善的基质-纤维界面和纤维表面周围地聚合物产物的增强生长有关。
Multi-scale simulation of stress transfer across ‘polymer bridge’ in graphene oxide/halloysite organic-inorganic hybrid aerogel
Shilei Xia, Hongyan Li, Hongli Liu, Shoucheng Sun, Baolian Zhang, Dongqing Wei, Le Lu
doi:10.1016/j.compscitech.2024.110714
氧化石墨烯/高岭土有机-无机杂化气凝胶中“聚合物桥”应力传递的多尺度模拟
In our previous work, organic-inorganic hybrid aerogels were successfully constructed utilizing graphene oxide (GO) sheets and halloysite nanotubes (HNTs), and interesting stress transfer behavior were found. Through preliminary experimental studies, we found that the movement of polymer molecules significantly affected the stress transfer behavior of aerogels. The mechanism might involve macroscopic and microscopic scales, which were difficult to be adequately studied by conventional experimental means. Therefore, this paper investigated the stress transfer behavior of hybrid aerogels utilizing finite element analysis (FEA) combined with molecular dynamics (MD) multi-scale simulation methods. The influence of the connection angles of GO and HNTs on the stress transfer ability was studied utilizing the FEA combined with theoretical formulas. The GO polymer pull-out systems were established by MD. The pull-out processes of polymethylmethacrylate (PMMA) and polysiloxane (PSO) were compared. The effect of oxygen-containing functional group coverage of GO on interface strength was studied. The results indicated that connection angles of 60° and 30° contributed more to the stress transfer between GO and HNTs under tensile and compression stress, respectively. The interfacial enhancement effect of the GO/polymer systems reached saturation when the coverage of oxygen-containing functional groups on the GO surface was 20%. Si-O-Si agglomeration networks were formed by silane-modified GO and PSO, which possessed stronger interfacial strength.
在我们之前的工作中,我们成功地利用氧化石墨烯(GO)薄片和高岭土纳米管(HNTs)构建了有机-无机杂化气凝胶,并发现了有趣的应力传递行为。通过初步的实验研究,我们发现聚合物分子的运动对气凝胶的应力传递行为有显著的影响。其机理可能涉及宏观和微观两个尺度,传统的实验手段难以对其进行充分的研究。为此,本文采用有限元分析(FEA)与分子动力学(MD)多尺度模拟相结合的方法研究了混合气凝胶的应力传递行为。采用有限元分析方法结合理论计算公式,研究了氧化石墨烯和纳米碳管连接角度对应力传递能力的影响。通过MD建立了氧化石墨烯聚合物的拉出体系,比较了聚甲基丙烯酸甲酯(PMMA)和聚硅氧烷(PSO)的拉出工艺。研究了氧化石墨烯含氧官能团覆盖率对界面强度的影响。结果表明,在拉伸应力和压缩应力作用下,连接角为60°和30°时,氧化石墨烯与纳米碳管之间的应力传递更有效。当含氧官能团在氧化石墨烯表面的覆盖率为20%时,氧化石墨烯/聚合物体系的界面增强效果达到饱和。硅烷改性氧化石墨烯和PSO可形成Si-O-Si团聚网络,具有更强的界面强度。