今日更新:Composite Structures 1 篇,Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 7 篇,Composites Science and Technology 2 篇
Optimal interply angle of bio-inspired composite curved panels with helicoidal fiber architecture
Pattama Khotjanta, Sontipee Aimmanee
doi:10.1016/j.compstruct.2024.118269
螺旋纤维结构仿生复合曲面板的最佳夹角
The exoskeleton structure of mantis shrimp’s dactyl clubs presents an extraordinary helicoidal reinforcement pattern, holding immense potential for revolutionizing fiber-reinforced composite materials. While extensive investigations have shed light on its unique advantages, the inherent nature of curved Bouligand structures remains incompletely comprehended. To elucidate these unexplored characteristics, the present study introduces a novel analytical model to efficiently calculate the interlaminar shear and normal stresses in helicoidal laminated curved beams under transverse loading. The analytical model systematically determines the optimal uniform fiber interply (pitch) angle for bio-inspired structures with arbitrary numbers of layers. The computational analysis revealed that achieving minimum interlaminar stresses always requires the precise orientation of π or 2π helicoids along the laminate thickness when the number of layers exceeds two. This theoretical discovery is remarkably identical to the study of stacked chitin fibrils in arthropod clubs reported in the literature. For a 37-ply composite, the flat and shallow-curved beam configurations primarily resulted in a 5° optimal pitch angle, while the deep-curved configuration yielded a 10° optimal angle. To validate the model, three-point bending testing were performed. Four fiber pitch angles were thoroughly examined, including the optimal and quad angles. The digital image correlation (DIC) technique was employed to analyze the structural responses and detect the onset of delamination. The numerical and experimental results demonstrated good consistency, exhibiting significant enhancement in the delamination resistance with the optimal angle of up to 30 percent.
螳螂虾的dactyl棒的外骨骼结构呈现出非凡的螺旋增强模式,具有巨大的潜力革命性的纤维增强复合材料。虽然广泛的研究揭示了其独特的优势,但弯曲的布利甘结构的内在本质仍然不完全被理解。为了阐明这些未被探索的特性,本研究引入了一种新的解析模型来有效地计算螺旋螺旋层合弯曲梁在横向荷载作用下的层间剪切和正应力。该分析模型系统地确定了具有任意层数的仿生结构的最佳均匀纤维间距角。计算分析表明,当层数超过两层时,要实现层间应力最小,总是需要π或2π螺旋沿层厚精确定向。这一理论发现与文献报道的节肢动物俱乐部中堆积的几丁质原纤维的研究非常一致。对于37层复合材料,平坦和浅弯曲的梁配置主要产生5°的最佳俯仰角,而深弯曲的梁配置产生10°的最佳角度。为了验证该模型,进行了三点弯曲试验。研究了四种纤维节角,包括最佳节角和四节角。采用数字图像相关(DIC)技术分析结构响应并检测分层的发生。数值与实验结果均显示出良好的一致性,当最佳角度达到30%时,抗分层能力显著增强。
Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber–matrix interphase − direct observations of the fiber–matrix interphase by SEM and TEM
Toshiya Kamae, Lawrence T. Drzal
doi:10.1016/j.compositesa.2024.108306
碳纤维/环氧复合材料性能的增强——通过扫描电镜和透射电镜直接观察纤维-基质间相
A new method to fabricate carbon fiber reinforced plastics (CFRPs) with multiwalled carbon nanotubes (MWNTs) as a secondary reinforcement has been developed. In this method, a uniform coating of MWNTs onto CFs was achieved by simply applying a CNT-containing sizing coating with the assistance of cationic polymers. It was found that the 0˚ tensile strength of the MWNT reinforced CFRPs was improved by 89 % with the incorporation of only 0.39 wt% MWNTs. The SEM and TEM observations of smooth surface and thin cross sections prepared by a tilted microtoming technique revealed that the CFRPs have a thin MWNT/epoxy resin layer of 100–––200 nm thickness at the fiber–matrix interphase. The results indicate that the MWNT reinforced fiber–matrix interphase, which has a high modulus and strength, increases the stress transfer and energy absorption resulting in a higher 0˚ tensile strength than the CFRPs without MWNTs.
提出了一种以多壁碳纳米管作为二次增强材料制备碳纤维增强塑料(cfrp)的新方法。在这种方法中,通过在阳离子聚合物的帮助下简单地应用含有碳纳米管的施胶涂层,可以在碳纳米管表面均匀地涂覆碳纳米管。结果表明,加入0.39 wt% MWNT后,MWNT增强cfrp的0˚拉伸强度提高了89 %。通过倾斜微切分技术制备的光滑表面和薄截面的SEM和TEM观察表明,cfrp在纤维-基体界面具有100—200 nm厚度的MWNT/环氧树脂薄层。结果表明:MWNT增强纤维-基体界面相具有较高的模量和强度,增加了应力传递和能量吸收,使cfrp的0˚拉伸强度高于未添加MWNT的cfrp;
A macromolecular flame retardant for polyamide 6 and its filaments with enhanced fire safety, tensile and UV-blocking performance
Yanlu Sun, Xilin Pei, Zhengqi Wang, Dequn Wu, Xueli Wang, Jianyong Yu, Ruchao Yuan, Faxue Li
doi:10.1016/j.compositesb.2024.111631
一种用于聚酰胺6及其长丝的高分子阻燃剂,具有增强的防火、拉伸和防紫外线性能
In the pursuit of enhancing the fire safety of polyamide 6 (PA6), the addition of flame retardants generally leads to hydrogen bond dissociation, which results in detrimental effects on the mechanical properties of PA6 composites and impedes processing and application in the textile field. In this study, a macromolecular flame retardant, PPB, designed with hydrogen bond donor-acceptor spacing aligned with PA6, was synthesized to increase the number of hydrogen bonds. The addition of 10 wt% PPB to the PA6 matrix (PA6/PPB10) endowed the composite with the limiting oxygen index (LOI) increased to 31.6% and V-0 rating in the vertical burning (UL-94) test. PA6/PPB10 also exhibited significant enhancement in tensile strength by 12.6% compared to pure PA6 and demonstrated a superior ultraviolet protection factor (UPF) value of 573, greatly exceeding the value of 3 for PA6. The quenching effect, diluting effect in the gas phase, and hydrogen bond interactions between PPB and PA6 backbones imparted PA6/PPB composites with satisfactory flame retardancy and mechanical properties. As a representative example, PA6/PPB10 was melt-spun into filaments with a pleasing tenacity of 3.6 cN/dtex and self-extinguishing capability within 5 sec after ignition, confirming the sustained comprehensive properties after spinning and drawing into filaments.
在追求提高聚酰胺6 (PA6)防火安全性的过程中,阻燃剂的加入通常会导致氢键解离,从而对PA6复合材料的力学性能产生不利影响,阻碍其在纺织领域的加工和应用。本研究合成了一种高分子阻燃剂PPB,其氢键给受体间距与PA6对齐,以增加氢键的数量。在PA6/PPB10基体中添加10 wt%的PPB,复合材料的极限氧指数(LOI)提高到31.6%,垂直燃烧(UL-94)试验的V-0等级提高。与纯PA6相比,PA6/PPB10的抗拉强度提高了12.6%,紫外线防护系数(UPF)为573,大大超过了PA6的3。PA6/PPB复合材料的淬火效应、气相稀释效应以及与PA6骨架之间的氢键相互作用使其具有良好的阻燃性能和力学性能。以PA6/PPB10为代表,熔融纺丝后得到了令人满意的强度为3.6 cN/dtex的长丝,并在着火后5秒内具有自熄能力,证实了纺丝和拉丝后综合性能的持续性。
Fracture mechanical and ablation behaviors of C/SiC–Cu3Si–Cu interpenetrating composites and their dependence on metal addition and interface thickness
Yue Wu, Bin Liang, Rida Zhao, Shengyang Pang, Bohui Sun, Chenglong Hu, Jian Li, Sufang Tang
doi:10.1016/j.compositesb.2024.111632
C/ SiC-Cu3Si-Cu互穿复合材料的断裂力学和烧蚀行为及其与金属添加量和界面厚度的关系
The C/SiC–Cu3Si–Cu interpenetrating composites were prepared by the ceramization and metallization of carbon fiber reinforced carbon aerogel (C/CA) preforms. Fracture mechanical and ablation behaviors as well as their dependence on metal addition and PyC interface thickness were investigated. With the presence of metallic components, the C/SiC–Cu3Si–Cu composites show pseudo-plastic fracture, typical brittle-plastic mixed fracture, and then ladder-like fracture with the PyC interface thickness increasing due to the co-existence of ductile and brittle components, obviously different from the fracture of conventional ceramic matrix composites. The composite with 3.0 μm-thick interface has the highest flexural strength of 292.8 MPa due to the proper interfacial bond strength and residual compressive stress. The composite with 1.9 μm-thick interface has the highest work of fracture but relatively low fracture toughness due to the abundant modes of crack propagation. The anti-ablation property is deteriorated with increased PyC thickness due to the weakened transpiration cooling effect and reduced oxide scale quality. The composite with 0.9 μm-thick interface exhibits lower mass and linear ablation rates of 0.054 mg cm−2 s−1 and 0.018 μm s−1 after ablation at 2200 °C for 600 s, respectively. This work provides vital insights into the control of the overall performance of carbon fiber reinforced ceramic-metal matrix composites.
采用碳纤维增强碳气凝胶(C/CA)预制体的陶瓷化和金属化工艺制备了C/ SiC-Cu3Si-Cu互穿复合材料。研究了材料的断裂力学和烧蚀行为及其与金属添加量和PyC界面厚度的关系。在金属成分存在的情况下,C/ SiC-Cu3Si-Cu复合材料表现为伪塑性断裂、典型的脆塑性混合断裂,并随着PyC界面厚度的增加,由于韧性和脆性成分并存,呈现阶梯状断裂,明显不同于常规陶瓷基复合材料的断裂。当界面厚度为3.0 μm时,由于界面结合强度和残余压应力合适,复合材料的抗折强度最高,达到292.8 MPa。当界面厚度为1.9 μm时,由于裂纹扩展模式丰富,复合材料的断裂功最高,但断裂韧性相对较低。随着PyC厚度的增加,由于蒸腾冷却效果减弱,氧化皮质量降低,抗烧蚀性能下降。界面厚度为0.9 μm的复合材料在2200℃下烧蚀600 s后,质量和线性烧蚀率分别为0.054 mg cm−2 s−1和0.018 μ s−1。这项工作为控制碳纤维增强陶瓷-金属基复合材料的整体性能提供了重要的见解。
NMR investigations on Cl− and Na+ ion binding during the early hydration process of C3S, C3A and cement paste: A combined modelling and experimental study
Yanliang Ji, Xiaoxiao Zhang, Leo Pel, Zhenping Sun
doi:10.1016/j.compositesb.2024.111624
C3S、C3A和水泥浆体水化初期Cl−和Na+离子结合的核磁共振研究:模型与实验相结合的研究
Using materials containing sodium chloride(e.g., seawater) to make concrete is sometimes unavoidable. However, the associated ion binding mechanisms and structural evolution during the early hydration process are not fully understood. This study investigated Cl− and Na + binding behaviour and microstructure of C3S, C3A and cement paste within the first 48h using a high-field NMR setup. Results show that during hydration, KOH can reduce Cl− binding but enhance Na + ion binding in C3S paste, while increasing gypsum dosage in C3A paste retards both Cl− and Na+ binding. Retarders reduce Cl− and Na+ binding, while accelerators slightly promote Cl− binding but reduce Na+ binding in cement paste. It is also found that boundary nucleation and growth(BNG) modelling is the most suitable for fitting the ion binding. Finally, the microstructure assessed by the T1 relaxation rate is related to ion binding in various ranges, indicating that hydrates during hydration have various binding efficiencies.
使用含有氯化钠的材料(如:(海水)来制造混凝土有时是不可避免的。然而,早期水化过程中相关的离子结合机制和结构演化尚不完全清楚。本研究使用高场核磁共振装置研究了C3S, C3A和水泥浆在前48小时内的Cl -和Na +结合行为和微观结构。结果表明:在水化过程中,KOH能降低C3S膏体中Cl -的结合,但能增强C3A膏体中Na+的结合,而增加C3A膏体中石膏的用量会减缓Cl -和Na+的结合。缓凝剂降低Cl -和Na+的结合,而促进剂略微促进Cl -的结合,但降低Na+的结合。边界成核与生长(BNG)模型最适合于离子结合的拟合。最后,通过T1弛豫率评价的微观结构与不同范围的离子结合有关,表明水化过程中水合物具有不同的结合效率。
Drop-weight impact and compressive properties of repeatable self-healing carbon fiber reinforced composites
Zhen Wang, Yan Li
doi:10.1016/j.compositesb.2024.111626
可重复自愈碳纤维增强复合材料的落锤冲击和压缩性能
Herein, repeated self-healing of impact damage in carbon fiber reinforced composites is successfully achieved by using hollow glass fibers containing self-healing resin and two types of microcapsules (HGFs-Ms). The HGFs-Ms and microcapsules containing hardener were incorporated to fabricate repeatable self-healing carbon fiber reinforced polymer composite laminates (RSH-CFRPs). Low-velocity drop-weight impact tests and compression tests were performed to investigate the impact resistance, energy absorption, residual compressive strength and repeated self-healing performances of the RSH-CFRPs. The results revealed that the energy absorption capacity of the RSH-CFRPs could be repeatedly recovered and the barely visible impact damage (BVID) zone was almost fully healed after every healing process. Moreover, the RSH-CFRPs successfully minimized the reduction in compressive strength after repeated drop-weight impact tests due to their efficient repeated self-healing ability in impact induced damage.
本文采用含自愈树脂的中空玻璃纤维和两种微胶囊(HGFs-Ms)成功实现了碳纤维增强复合材料冲击损伤的反复自愈。将hfs - ms和含有固化剂的微胶囊结合在一起,制备了可重复自修复的碳纤维增强聚合物复合材料层合板(RSH-CFRPs)。通过低速落重冲击试验和压缩试验,研究了rsh - cfrp的抗冲击性能、吸能性能、残余抗压强度和反复自愈性能。结果表明,RSH-CFRPs的能量吸收能力可以反复恢复,每次愈合后几乎完全愈合了几乎不可见的冲击损伤区。此外,RSH-CFRPs由于在冲击损伤中具有有效的重复自愈能力,成功地将反复落重冲击试验后抗压强度的降低降至最低。
A Quick and Effective Modification Method to Improve the Patency and Endothelialization of Cryopreserved Allogenic Blood Vessels
Jingai Zhang, Yamin Liu, Ye Wan, Shanshan Kang, Quhan Cheng, Xin Kong, Ting Wang, Lei Cao, Xiaofeng Li, Shafiq Muhammad, Xianhui Liang, Pei Wang, Deling Kong, Kai Wang
doi:10.1016/j.compositesb.2024.111628
一种快速有效的改善同种异体低温保存血管通畅和内皮化的修饰方法
Cryopreserved allogeneic blood vessels have received considerable attention for vascular reconstruction owing to their easy availability and excellent anti-infective property. However, current cryopreservation methods cause significant endothelium loss alongside directly exposing smooth muscle cells and extracellular matrix components to the circulating blood, which can induce thrombosis and/or restenosis. We covalently coupled PEGylated phospholipids (DMPE-PEG) with anti-coagulant bivalirudin (abbreviated as DPB) and endothelial progenitor cell (EPC)-capturing TPSLEQRTVYAK (TPS) (abbreviated as DPT), respectively. Both DPT and DPB were co-modified onto the lumen surface of cryopreserved allogeneic vessels through hydrophobic interaction between DMPE-PEG and the phospholipid bilayer of surviving cells. Cy7-labled DMPE-PEG was used to investigate the saturation concentration and incubation time on the lumen surface of cryopreserved vessels. DPB and DPT co-modified cryopreserved vessels were characterized through different assays, including tissue viability and gene expression, hemocompatibility, and EPC capture in vitro and an artery implantation model in vivo. Co-modification of DPB and DPT attained luminal saturation as earlier as 10 min while preserving the viability of the residual cells on the cryopreserved vessels. The optimally co-modified cryopreserved allogeneic vessels showed that the DPB can improve the hemocompatibility by reducing fibrinogen adsorption and platelets adhesion alongside protecting the EPCs-capturing function of the DPT via inhibiting the masking by blood components, which altogether promoted the patency and endothelialization. This work provided a quick, biocompatible and an effective approach to functionalize tissue-engineered constructs containing alive cells.
低温保存的异体血管由于其易于获得和良好的抗感染特性而受到血管重建的广泛关注。然而,目前的冷冻保存方法 会导致严重的内皮细胞损失,同时将平滑肌细胞和细胞外基质成分直接暴露于循环血液中,这可能导致血栓形成和/或再狭窄。我们将聚乙二醇化磷脂(DMPE-PEG)分别与抗凝剂比伐鲁定(简称DPB)和内皮祖细胞(EPC)捕获TPSLEQRTVYAK(简称DPT)共价偶联。DPT和DPB通过DMPE-PEG与存活细胞磷脂双分子层的疏水相互作用,共同修饰在低温保存的异体血管的管腔表面。采用cy7标记的DMPE-PEG观察其在低温保存血管管腔表面的饱和浓度和孵育时间。通过体外组织活力和基因表达、血液相容性、EPC捕获和体内动脉植入模型等不同的实验对DPB和DPT共修饰的冷冻保存血管进行了表征。DPB和DPT的共修饰早在10分钟内达到腔内饱和,同时保留了冷冻保存血管上残留细胞的活力。结果表明,DPT可通过减少纤维蛋白原吸附和血小板粘附来改善血液相容性,同时通过抑制血液成分的掩盖来保护DPT的epcs捕获功能,从而促进血管通畅和内皮化。这项工作提供了一种快速、生物相容性和有效的方法来功能化含有活细胞的组织工程构建体。
Effects of carbon-fibre Z-pins on the through-thickness tensile strength of curved composite laminates under four-point bending
Mudan Chen, Bing Zhang, Giuliano Allegri, Stephen R. Hallett
doi:10.1016/j.compositesb.2024.111629
碳纤维z销对四点弯曲弯曲复合材料层合板全厚度抗拉强度的影响
This study investigates the influence of discrete through-thickness reinforcement, i.e. Z-pins, on the through-thickness tensile strength (TTS) of curved laminates through four-point bending experiments. Three types of samples are considered: unpinned, and Z-pinned with 0.27 % and 0.54 % areal densities. HexPly® IM7/8552 carbon/epoxy unidirectional prepreg with 0/±45 layup and 0.28 mm diameter T300/BMI pins were employed to manufacture the specimens. The Z-pinned laminates have comparable TTS with the unpinned samples in terms of the first observable load-drop. However, the TTS corresponding to the ultimate load-drop for low-density and high-density Z-pinned samples are 29 % and 38 % lower than for the unpinned ones, respectively. Z-pinned samples show less scatter than unpinned ones in terms of the ultimate TTS values. All specimens failed suddenly, i.e. with no evident damage progression. This implies that Z-pins were not able to form a progressive bridging zone to dissipate mechanical energy. Through a detailed meso-scale finite element analysis (FEA), it was found that the high through-thickness tensile residual stress in the Z-pin neighbourhood generated from the cool-down stage of cure is an important factor in causing the reduction in TTS of Z-pinned laminates. CT scan images of tested Z-pinned specimens show that the carbon-fibre pins experience fracture inside the laminates.
通过四点弯曲实验,研究了离散贯厚钢筋(z销)对弯曲层合板贯厚抗拉强度的影响。考虑了三种类型的样品:未钉住的,z钉住的,面积密度分别为0.27%和0.54%。采用HexPly®IM7/8552碳/环氧单向预浸料,铺层0/±45层,直径0.28 mm的T300/BMI引脚制作样品。在第一个可观察到的负载下降方面,z -钉住层压板具有与未钉住样品相当的TTS。然而,低密度和高密度z -钉住试样的TTS对应的极限载荷降分别比未钉住试样低29%和38%。就最终TTS值而言,z -钉住的样品比未钉住的样品具有更小的散射。所有的标本都是突然失效的,即没有明显的损伤进展。这意味着z销不能形成一个渐进的桥接区来耗散机械能。通过详细的细观有限元分析(FEA)发现,固化冷却阶段产生的高贯穿厚度的z销邻近拉伸残余应力是导致z销层合板TTS降低的重要因素。测试z -钉试样的CT扫描图像显示碳纤维钉在层合板内部发生断裂。
Further understanding of the improved mechanical properties for SiCf/BN/SiC composites prepared by CVI+PIP hybrid technique: application of micro-mechanical methods
Lu Li, Xiali Zhen, Ruixiao Zheng, Chaoli Ma, Cuiyun Liu
doi:10.1016/j.compositesb.2024.111633
进一步了解CVI+PIP复合制备SiCf/BN/SiC复合材料力学性能的改善:微力学方法的应用
In this work, a chemical vapor infiltration (CVI) combined with polymer impregnation and pyrolysis (PIP) technique was used to prepare high-performance SiCf/BN/SiC composites. Compared with the SiCf/BN/SiC composite fabricated by conventional PIP technique, the SiCf/BN/SiC composite fabricated by CVI+PIP hybrid technique showed the significantly improved flexural strength and toughness. The microstructures, macro-mechanical and micro-mechanical properties were systematically investigated and compared. By applying various micro-mechanical tests (fiber push-in, micropillar compression and micropillar splitting), the in-situ mechanical parameters of different micro-zones for SiCf/BN/SiC composites were obtained accurately. Based on the characterization results of microstructures and micro-mechanical properties, the corresponding toughening process was analyzed in combination of the classical He-Hutchinson criterion. The results indicate that the micro-mechanical test methods can provide accurate and effective data for the analysis of toughening and fracture process, presenting great potentials in the further understanding of the improvement in mechanical properties of ceramic matrix composites.
本文采用化学气相渗透(CVI)结合聚合物浸渍热解(PIP)技术制备高性能SiCf/BN/SiC复合材料。与传统PIP工艺制备的SiCf/BN/SiC复合材料相比,CVI+PIP复合工艺制备的SiCf/BN/SiC复合材料的抗弯强度和韧性均有显著提高。系统地研究和比较了材料的微观组织、宏观力学和微观力学性能。通过纤维推入、微柱压缩和微柱劈裂等多种微力学试验,准确获得了SiCf/BN/SiC复合材料不同微区的原位力学参数。基于微观组织和微观力学性能表征结果,结合经典He-Hutchinson准则分析了相应的增韧过程。结果表明,微力学测试方法可以为分析陶瓷基复合材料的增韧和断裂过程提供准确有效的数据,在进一步了解陶瓷基复合材料力学性能的改善方面具有很大的潜力。
Prediction of puncture key parameters in aramid stab-resistant fabrics based on surface damage images using artificial neural networks
Mengzhen Liu, Siyu Liu, Haotian Li, Hong Zhang, Guangyan Huang
doi:10.1016/j.compscitech.2024.110713
基于表面损伤图像的芳纶防刺织物穿刺关键参数人工神经网络预测
Stab-resistant clothing significantly contribute to personal protection. In the field of stab resistance, traditional methods typically use the known impact conditions to evaluate the protection performance and damage of stab-resistant materials. However, these methods are unable to backtrack impact information from known damage, which makes it difficult to determine impactor characteristics. This study introduces a novel puncture damage prediction model capable of predicting the impact kinetic energy, peak puncture force, and number of penetration layers of aramid stab-resistant fabrics solely from surface damage images under various puncture conditions. First, the different puncture damages images and their corresponding parameters are obtained through dynamic stabbing tests and image acquisition system. Second, the segmentation network (named SAN_SE model) developed in this study overcomes the complexity of the surface texture of fiber-reinforced composites and achieves precise segmentation of damage regions. The training loss is stable at 1.5x10-4. Then a classification model is constructed to establish a relationship between the images and puncture parameters, followed by the application of transfer learning to derive a regression model from the classification model. The error of this regression model is below 6%. Finally, a real-time puncture damage prediction system is constructed, applying this puncture damage prediction model to actual damage scenarios. The system achieves an accuracy of 88.57% in predicting the number of penetration layers and could execute single images within 0.025s. The puncture damage prediction model proposed in this study is applicable to real-time monitoring systems in medical and military fields, such as injury assessment and counter-surveillance.
防刺服对个人保护有很大的帮助。在抗刺伤领域,传统方法通常使用已知的冲击条件来评估抗刺伤材料的防护性能和损伤。然而,这些方法无法从已知损伤中回溯撞击信息,这使得确定撞击器特性变得困难。本文提出了一种新的穿刺损伤预测模型,该模型能够仅从不同穿刺条件下的表面损伤图像预测芳纶防刺织物的冲击动能、峰值穿刺力和穿透层数。首先,通过动态刺穿试验和图像采集系统获取不同刺穿损伤图像及其相应参数;其次,本文建立的分割网络(命名为SAN_SE模型)克服了纤维增强复合材料表面织构的复杂性,实现了损伤区域的精确分割。训练损失稳定在1.5x10-4。然后构建分类模型,建立图像与穿刺参数之间的关系,然后应用迁移学习从分类模型中导出回归模型。该回归模型的误差在6%以下。最后,构建了穿刺损伤实时预测系统,并将该模型应用于实际损伤场景。该系统预测穿透层数的准确率为88.57%,可在0.025秒内完成单幅图像的处理。本研究提出的穿刺损伤预测模型适用于损伤评估、反监视等医疗和军事领域的实时监测系统。
Flexible conductive polymer composite film with sandwich-like structure for ultra-efficient and high-stability electromagnetic interference shielding
Yabin Guo, Xin Chen, Chen Wei, Yi Luo, Jianwen Chen, Yutian Zhu
doi:10.1016/j.compscitech.2024.110717
具有三明治状结构的柔性导电聚合物复合薄膜,用于超高效、高稳定的电磁干扰屏蔽
Flexible electromagnetic interference (EMI) shielding films with the merits of light-weight, flexibility, and high EMI shielding performance are the essential materials for the consumer electronics and communication products. Herein, we construct a hybrid conductive network based on the electrospinning thermoplastic polyurethane (TPU) film loaded with different dimensional conductive fillers, including 0D FeCl3, 1D carbon nanotube (CNT) and 2D graphene nanosheet (GN), which fabricate a flexible, light-weight, and ultra-efficient EMI shielding composite film. In specific, the electrospinning porous TPU film is firstly anchored by CNTs assisted by ultrasound to generate the porous TPU/CNT film. Thereafter, the as-prepared porous TPU/CNT film is filtered by GN/CNT/FeCl3 solution to generate a double-layer GN/CNT/FeCl3@TPU/CNT film. Finally, another porous TPU/CNT film is sealed onto the GN/CNT/FeCl3@TPU/CNT film by hot-pressing, which fabricates a sandwiched TPU/CNT@GN/CNT/FeCl3@TPU/CNT composite film. It is interesting to note that the composite film possesses the ultrahigh EMI shielding value (56.0 dB at 10.0 GHz) in the X-band (8.2-12.4 GHz) with high flexibility, excellent mechanical properties, long-term durability (acid-base environment resistance and stability after 1000 bends), as well as high thermal conductivity (6.53 W/(m K)). This work proposes a simple but efficiency strategy to design the flexible EMI shielding film with ultra-high performance and outstanding durability.
柔性电磁干扰屏蔽膜具有重量轻、柔韧性好、屏蔽性能高等优点,是消费电子和通信产品中必不可少的材料。在此,我们构建了一个基于静电纺丝热塑性聚氨酯(TPU)薄膜的混合导电网络,该混合导电网络加载了不同尺寸的导电填料,包括0D FeCl3, 1D碳纳米管(CNT)和2D石墨烯纳米片(GN),从而制备了一种柔性,轻质,超高效的电磁干扰屏蔽复合薄膜。具体来说,电纺丝多孔TPU膜首先通过CNTs在超声辅助下锚定,生成多孔TPU/CNT膜。然后,将制备好的多孔TPU/CNT膜用GN/CNT/FeCl3溶液过滤,生成双层GN/CNT/FeCl3@TPU/CNT膜。最后,通过热压将另一多孔TPU/CNT膜密封在GN/CNT/FeCl3@TPU/CNT膜上,制成夹心TPU/CNT@GN/CNT/FeCl3@TPU/CNT复合膜。值得注意的是,复合薄膜在x波段(8.2-12.4 GHz)具有超高的电磁干扰屏蔽值(10.0 GHz时56.0 dB),具有高柔韧性,优异的机械性能,长期耐用性(耐酸碱环境和1000次弯曲后的稳定性)以及高导热系数(6.53 W/(m K))。本工作提出了一种简单而高效的策略来设计具有超高性能和优异耐用性的柔性电磁干扰屏蔽膜。