今日更新:Composite Structures 3 篇,Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 1 篇,Composites Science and Technology 1 篇
Photo-responsive platelet vesicles-iron oxide nanoparticles-bioglass composite for orthopedic bioengineering
Andrew E.-Y. Chuang, Pei-Wei Weng, Chia-Hung Liu, Pei-Ru Jheng, Lekshmi Rethi, Hieu Trung Nguyen, Hsien-Tsung Lu
doi:10.1016/j.compstruct.2024.118263
用于骨科生物工程的光响应血小板囊泡-氧化铁纳米颗粒-生物玻璃复合材料
In our study, we present an innovative approach to precisely modulate cellular activity and facilitate bone regeneration through non-invasive, remote stimuli application. Our methodology involves the creation of a composite material, namely platelet vesicles, iron oxide nanoparticles, and 45 s5 Bioglass (PLTV-IO NPs/BG), designed to establish a photoelectric and photothermal (PET/PTT) environment around an implant. Under near-infrared (NIR) light, the PLTV-IO NPs/BG composite demonstrates mild-hyperthermic and photoelectric responsive effects. Notably, this application enhances the mechanical strength of the hydrogel F127 and encourages sequential cell management. These observed effects collectively indicate the material’s potential in tissue engineering, specifically for bone regeneration. Our research introduces a biological therapeutic strategy that achieves remote and non-invasive regulation of cellular progression behaviors within phototherapeutic microenvironments, effectively harnessing the power of NIR light. This multidimensional approach holds promise for advancing the field of biomedical research and therapeutic applications.
在我们的研究中,我们提出了一种创新方法,通过非侵入性的远程刺 激应用,精确调节细胞活性并促进骨再生。我们的方法包括创建一种复合材料,即血小板囊泡、氧化铁纳米颗粒和 45 s5 生物玻璃(PLTV-IO NPs/BG),用于在植入物周围建立光电和光热(PET/PTT)环境。在近红外(NIR)光下,PLTV-IO NPs/BG 复合材料显示出温和的超热和光电响应效应。值得注意的是,这种应用增强了水凝胶 F127 的机械强度,并促进了细胞的连续管理。这些观察到的效应共同表明了这种材料在组织工程,特别是骨再生方面的潜力。我们的研究引入了一种生物治疗策略,可在光疗微环境中实现对细胞进展行为的远程非侵入性调节,有效利用了近红外光的力量。这种多维方法有望推动生物医学研究和治疗应用领域的发展。
Enabling multi-stage high-temperature strength evolution prediction of ceramizable composites using a novel multi-field coupled model
Zheng Gong, Huanfang Wang, Chao Zhang
doi:10.1016/j.compstruct.2024.118279
利用新型多场耦合模型实现可陶瓷化复合材料的多阶段高温强度演化预测
Strength varies significantly under high-temperature environment, due to the inherent thermomechanical behavior of the ceramizable material and its coupling with possible chemical reactions. The complexity amplifies for composite materials, considering their multi-phase and multi-scale features, and more importantly, their complicated chemical reactions under high-temperature service conditions. This study proposes an innovative multi-field coupling theory framework for predicting the multi-stage evolution behavior of high-temperature mechanical properties of a ceramizable composite, through incorporating an extended chemical kinetics method, coupled deformation, mass diffusion and heat conduction. The developed model enables direct coupling and simultaneous solving of physical, chemical and thermal variables. It captures well the degradation of mechanical properties for the initial stage and the increase of strength for the later stage, along with the increasing of temperature. The validated model also enables well prediction of time-dependent mechanical properties at high service temperature, with an average error of 8.67% against experimental measured results. The developed method can serve as a general method for the prediction of high-temperature mechanical property of thermal protection composites and structures.
由于可陶瓷材料固有的热机械行为及其与可能发生的化学反应的耦合,高温环境下的强度变化很大。考虑到复合材料的多相和多尺度特征,更重要的是考虑到其在高温服役条件下的复杂化学反应,复合材料的复杂性会进一步增加。本研究提出了一种创新的多场耦合理论框架,通过结合扩展的化学动力学方法、耦合变形、质量扩散和热传导,预测可陶瓷化复合材料高温力学性能的多阶段演化行为。所开发的模型可直接耦合并同时求解物理、化学和热变量。它能很好地捕捉到随着温度的升高,初期阶段机械性能的下降和后期阶段强度的提高。经过验证的模型还能很好地预测高使用温度下随时间变化的机械性能,与实验测量结果的平均误差为 8.67%。所开发的方法可作为热防护复合材料和结构高温力学性能预测的通用方法。
Evaluation of fatigue damage of woven GFRP laminate by dynamic properties
Ruixi Xu, Akihiko Sato, Yasuo Kitane, Kunitomo Sugiura
doi:10.1016/j.compstruct.2024.118280
通过动态特性评估 GFRP 编织层压板的疲劳损伤
As Glass Fiber Reinforced Polymers (GFRP) have increasingly been used in civil infrastructures construction, their mechanical properties have received more and more attention. Although its performance under static loading has been studied widely, experimental and analytical research on its dynamic response is still insufficient. In particular, the relationship between fatigue damage occurring in woven cloth GFRP and its dynamic properties has not been quantitatively evaluated. Therefore, by carrying out impact and fatigue loading tests, investigated in this study is the variation of dynamic properties on GFRP orthogonal laminate with fatigue damage. The experiments revealed that the damping ratio of GFRP laminates with both 0/90 degrees fibers and ± 45 degrees fibers showed an increasing trend with the number of loading cycles, while the natural frequency showed a decreasing trend. Based on this trend, this study proposed a method to monitor fatigue damage progression of the material through the variation of natural frequencies. The decreasing trend of natural frequency could be simulated well by the theoretical model proposed in this study. Furthermore, based on previous studies and the experimental results of this study, a new frequency-based damage index to monitor GFRP’s fatigue life was proposed.
随着玻璃纤维增强聚合物(GFRP)越来越多地应用于民用基础设施建设,其机械性能也受到越来越多的关注。尽管对其在静态负载下的性能进行了广泛的研究,但对其动态响应的实验和分析研究仍然不足。特别是对编织布 GFRP 发生的疲劳损伤与其动态性能之间的关系还没有进行定量评估。因此,本研究通过冲击和疲劳加载试验,研究了疲劳损伤对 GFRP 正交层压板动态特性的影响。实验结果表明,具有 0/90 度纤维和 ±45 度纤维的 GFRP 层压板的阻尼比随加载循环次数的增加呈上升趋势,而固有频率则呈下降趋势。基于这一趋势,本研究提出了一种通过固有频率的变化来监测材料疲劳损伤进展的方法。本研究提出的理论模型可以很好地模拟固有频率的下降趋势。此外,根据以往的研究和本研究的实验结果,提出了一种新的基于频率的损伤指数来监测 GFRP 的疲劳寿命。
A novel approach to design structural natural fiber composites from sustainable CO 2 -derived polyhydroxyurethane thermosets with outstanding properties and circular features
Guillem Seychal, Pierre Nickmilder, Vincent Lemaur, Connie Ocando, Bruno Grignard, Philippe Leclère, Christophe Detrembleur, Roberto Lazzaroni, Haritz Sardon, Nora Aranburu, Jean-Marie Raquez
doi:10.1016/j.compositesa.2024.108311
利用可持续的二氧化碳衍生聚羟基聚氨酯热固性材料设计具有出色性能和循环特性的天然纤维结构复合材料的新方法
We herein propose capitalizing on strong hydrogen bonding from novel bio-CO 2 -derived dynamic thermosets to achieve high-performance natural fiber composites (NFC) with circular features. CO 2 - and biomass-derived polyhydroxyurethane (PHU) thermosets were selected, for the first time of our knowledge, as matrices for their ability to make strong H-bond, resulting in outstanding mechanical properties for NFC. Exploiting this H-bond key feature, exceptional interface bonding between flax and PHU was confirmed by atomic force microscopy and rationalized by atomistic simulation. Without any treatment, an increase of 30% of stiffness and strength was unveiled compared to an epoxy benchmark, reaching 35 GPa and 440 MPa respectively. Related to the thermoreversible nature of hydroxyurethane moieties, cured flax-PHU were successfully self-welded and displayed promising properties, together with recyclability features. This opens advanced opportunities that cannot be reached with epoxy-based composites. Implementing CO 2 -derived thermosets in NFC could lead to more circular materials, critical for achieving sustainability goals.
在此,我们提议利用新型生物-CO 2-衍生动态热固性材料的强氢键来实现具有圆形特征的高性能天然纤维复合材料(NFC)。据我们所知,二氧化碳和生物质衍生的聚羟基氨基甲酸酯(PHU)热固性塑料首次被选为基材,因为它们能够产生强大的氢键,从而为 NFC 带来出色的机械性能。利用这种 H 键的关键特性,亚麻和 PHU 之间特殊的界面键合得到了原子力显微镜的证实,并通过原子模拟得到了合理的解释。与环氧基准相比,在不做任何处理的情况下,刚度和强度提高了 30%,分别达到 35 GPa 和 440 MPa。由于羟基聚氨酯分子具有热可逆性,固化后的亚麻-PHU 可成功实现自焊接,并显示出良好的性能和可回收性。这开创了环氧基复合材料无法达到的先进技术。在 NFC 中使用二氧化碳衍生热固性材料可以生产出更多的循环材料,这对实现可持续发展目标至关重要。
Effect of temperature on binding process of calcium carbonate concrete through aragonite crystals precipitation
Ngoc Kien Bui, Ryo Kurihara, Manabu Kanematsu, Hikotsugu Hyodo, Takafumi Noguchi, Ippei Maruyama
doi:10.1016/j.compositesb.2024.111625
温度对文石晶体析出碳酸钙混凝土结合过程的影响
This study investigated the impact of temperature on the strength development of calcium carbonate concrete (CCC) comprising calcium carbonate and concrete waste. CCC exhibited its highest compressive strength when manufactured at temperatures between 60–70 °C, thereby demonstrating strengths 1.5 and 2.7 times greater than those achieved at 40 and 90 °C, respectively. At this temperature range (60–70 °C), CCC showed the highest amount of precipitated aragonite with large acicular aragonite crystals, which decreased the porosity of CCC. This temperature range governed the homogeneous distribution of calcium carbonate deposition within the CCC specimen. Moreover, the carbonated cement paste particles within the CCC continuously underwent aqueous carbonation, thereby providing an additional Ca source for calcium carbonate precipitation in CCC. At high temperatures, this process promotes the precipitation of Ca ions as needle-like aragonite crystals during reprecipitation, thereby accelerating the transformation of calcium carbonate polymorphs. The CCC strength arose from the deposition of calcium carbonate from input calcium bicarbonate solution and the reprecipitation of calcium carbonate during aqueous carbonation. The calcium carbonate precipitation from aqueous carbonation accounts for 30% of the total calcium carbonate precipitation of CCC. Needle-like aragonite crystals functioned as interlocking bridges between the particles and frame connections, thereby effectively strengthening the CCC composite.
本研究探讨了温度对由碳酸钙和混凝土废料组成的碳酸钙混凝土(CCC)强度发展的影响。碳酸钙混凝土在 60-70 °C之间的温度下生产时抗压强度最高,分别是在 40 °C和90 °C温度下强度的 1.5 倍和 2.7 倍。在这一温度范围(60-70 °C)内,CCC 中析出的文石数量最多,且析出了大量针状文石晶体,从而降低了 CCC 的孔隙率。这一温度范围决定了碳酸钙沉积在 CCC 试样中的均匀分布。此外,CCC 中的碳化水泥浆颗粒不断发生水碳化,从而为 CCC 中碳酸钙的沉淀提供了额外的钙源。在高温条件下,这一过程会促进 Ca 离子在再沉淀过程中析出针状文石晶体,从而加速碳酸钙多晶体的转变。CCC 的强度来自碳酸氢钙输入溶液中碳酸钙的沉淀和水碳化过程中碳酸钙的再沉淀。水碳酸化过程中析出的碳酸钙占 CCC 碳酸钙析出总量的 30%。针状文石晶体在颗粒和框架连接之间起到了连锁桥梁的作用,从而有效地强化了 CCC 复合材料。
GPC filler with dual functions of physical barrier and corrosion inhibition for corrosion protection enhancement of electrophoretic deposited epoxy coating
Rui Gou, Shihong Zhang, Yi He, Changhua Li, Dan Sun, Yiling He, Hongjie Li, Khavkin Aleksandr, Xiao Guo, Hua Xiang
doi:10.1016/j.compscitech.2024.110711
具有物理屏障和缓蚀双重功能的 GPC 填料,用于增强电泳沉积环氧涂层的防腐性能
In this work, the synergistic effect of polyaniline (PANI) and Ce cations was utilized to develop a graphene oxide (GO) electrophoretic deposition (EPD) green epoxy (EP) coating with a physical barrier and corrosion inhibition. PANI and Ce cation not only form a protective layer with inhibition but also convert the negative charge of GO to a positive charge, thus satisfying the conditions of cathodic electrophoretic deposition (C-EPD). Anti-corrosion test results showed that the GO/PANI/Ce(NO3)3 (GPC) /EP composite coating has the highest impedance, with the impedance modulus at day 35 three orders of magnitude higher than that of the neat EP coating. The passivation film generated by the GPC inhibits large corrosion extensions; it produces a significant self-healing effect, as evidenced by the corrosion morphology, the XPS analysis, and the stable value of the impedance modulus. This work provides a new strategy for manufacturing high-performance electrophoretic epoxy coatings with self-healing properties.
本研究利用聚苯胺(PANI)和Ce阳离子的协同效应,开发了一种具有物理屏障和缓蚀作用的氧化石墨烯(GO)电泳沉积(EPD)绿色环氧树脂(EP)涂层。PANI 和 Ce 阳离子不仅能形成具有抑制作用的保护层,还能将 GO 的负电荷转化为正电荷,从而满足阴极电泳沉积(C-EPD)的条件。防腐蚀测试结果表明,GO/PANI/Ce(NO3)3 (GPC) /EP 复合涂层的阻抗最高,第 35 天时的阻抗模量比纯 EP 涂层高三个数量级。由 GPC 生成的钝化膜可抑制大的腐蚀扩展;从腐蚀形态、XPS 分析和稳定的阻抗模量值可以看出,它产生了显著的自修复效果。这项工作为制造具有自修复特性的高性能电泳环氧涂层提供了一种新策略。