今日更新:Composite Structures 2 篇,Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 1 篇,Composites Science and Technology 1 篇
Susceptibility versus flexural stiffness in the stability of hybrid laminate columns with a rectangular cross section for a 1D model
Andrzej Teter, Zbigniew Kolakowski
doi:10.1016/j.compstruct.2024.118362
一维模型中矩形截面混合层压板柱稳定性中的敏感性与抗弯刚度关系
Hybrid columns of FGM/FML type with inhomogeneous transverse structure perpendicular to their length are discussed. After that, laminated columns with different layups of laminate plies are discussed, with focus put on the effect exerted by many coupling of the stiffness submatrix on the lowest eigenvalue load. All columns were simply supported The study uses three methods for determining the lowest eigenvalues. The first two are analytical beam methods (i.e. 1D modelling approaches) based on the use of the Euler-Bernoulli theory. The proposed 1D methods are a generalisation of the well-known approach of determining the lowest eigenloads of isotropic columns. The first approach is to solve the eigenproblem directly from the differential equation of the deflection line. The second approach assumes that the curvature of the beam depends on the susceptibility of the beam. This is a fundamental assumption in the bending theory of beams and thin plates. The third method is the FEM (3D shell approach) which is used for the verification of the previous calculations. A comparison of the obtained results showed that the proposed 1D (one-dimensional) approach based on the full susceptibility matrix, which is the inverse stiffness matrix was as accurate as the 3D (three-dimensional) FEM shell model. The relative difference does not exceed 3%. Second 1D approach based on the stiffness matrix yields many times unacceptable differences relative to the reference results obtained by the FEM method. This comparison clearly demonstrates that an approach based on the assumption that curvature is directly proportional to susceptibility in flexural composite structures produces accurate results for all types of coupling.The existing literature extensively explores the impacts of stiffness matrix elements on both the linear and non-linear stability of laminate columns. However, there is a notable absence of studies focusing on the influence of susceptibility. This crucial aspect has been overlooked in prior studies. The present paper endeavors to fill this gap by shedding light on the influence of susceptibility, thereby emphasizing its significance in the analysis of laminate column stability.
讨论了具有垂直于其长度的不均匀横向结构的 FGM/FML 型混合柱。随后,讨论了不同层叠层的层叠柱,重点是刚度子矩阵的许多耦合对最低特征值载荷的影响。研究采用三种方法确定最低特征值。前两种是基于欧拉-伯努利理论的梁分析方法(即一维建模方法)。拟议的一维方法是对确定各向同性柱最低特征荷载的著名方法的概括。第一种方法是直接根据挠度线微分方程求解特征问题。第二种方法假定梁的曲率取决于梁的敏感性。这是梁和薄板弯曲理论中的一个基本假设。第三种方法是有限元法(三维壳体法),用于验证之前的计算结果。对所得结果的比较表明,基于全易感矩阵(即反刚度矩阵)的拟议 1D(一维)方法与 3D (三维)有限元壳模型同样精确。相对差异不超过 3%。第二种基于刚度矩阵的一维方法与有限元方法得出的参考结果相比,产生了数倍的不可接受的差异。这一比较清楚地表明,基于曲率与挠性复合结构中的易感性成正比这一假设的方法可以为所有类型的耦合产生精确的结果。现有文献广泛探讨了刚度矩阵元素对层压柱线性和非线性稳定性的影响。然而,关于易感性影响的研究却明显不足。之前的研究忽略了这一重要方面。本文试图通过阐明易感性的影响来填补这一空白,从而强调易感性在层压支柱稳定性分析中的重要性。
Deflection and stress characteristics of single lap joint (adhesively bonded) theoretical analysis and experimental verification
Naveen Kumar Akkasali, Sandhyarani Biswas, Subrata Kumar Panda
doi:10.1016/j.compstruct.2024.118375
单搭接接头(粘合剂粘接)的挠度和应力特性理论分析与实验验证
The adhesively bonded single-lap joint strength is computed numerically and verified with the experiment. An ABAQUS model is prepared to analyze by adding the primary information, i.e., geometry, material properties, element, and solution type, including the boundary conditions. The model accuracy has been verified through two-step comparisons with published numerical deflection data and in-house experiments. The validated model is used to compute the energy-absorbing capacity better to understand lap joint strength. Further, the statistical analysis (variance-based sensitivity analysis) is conducted to measure the model output variability with the model input parameter. Additionally, the influences of geometry and property-dependent design parameters (layup schemes, loading position, adherend thickness ratio (L/t), and adhesive thickness ratio: (a/h), including the overlapping length (25, 30, 35, and 40 mm) are examined through several examples. The conclusions on the overlap length in bonded joints are that an increase in intact/lap length improves the joint stiffness and decreases the deflection. Similarly, a few insights on layer sequence (angle-ply) and shear stress thickness ratio are discussed in detail.
通过数值计算和实验验证了粘合单搭接接头的强度。通过添加主要信息(即几何形状、材料属性、元素和求解类型,包括边界条件),建立 ABAQUS 模型进行分析。通过与已公布的数值挠度数据和内部实验进行两步对比,验证了模型的准确性。经过验证的模型可用于计算能量吸收能力,从而更好地了解搭接强度。此外,还进行了统计分析(基于方差的敏感性分析),以测量模型输出与模型输入参数之间的变异性。此外,还通过几个实例研究了与几何形状和特性相关的设计参数(铺设方案、加载位置、粘合剂厚度比 (L/t) 和粘合剂厚度比:(a/h),包括重叠长度(25、30、35 和 40 毫米))的影响。关于粘接接头重叠长度的结论是,增加完整/重叠长度可提高接头刚度并减少挠度。同样,我们还详细讨论了关于层序(角层)和剪应力厚度比的一些见解。
Nanocellulose-assisted construction of multi-cavity structured Ti3C2Tx/melamine composite sponges for enhanced electromagnetic interference shielding
Daqiang Zhao, Xu Zhou, Tianhao Cui, Gui-Gen Wang
doi:10.1016/j.compositesa.2024.108347
纳米纤维素辅助构建用于增强电磁干扰屏蔽的多腔结构 Ti3C2Tx/melamine 复合海绵
The deposition of Ti3C2Tx nanosheets onto an ultralight melamine sponge (MS) holds great appeal for constructing mechanically robust and high-performance electromagnetic interference (EMI) shielding composites. However, the full potential of Ti3C2Tx materials for shielding performance is impeded by the insufficient affinity between Ti3C2Tx nanosheets and MS. Herein, with the assistance of cellulose nanofibers (CNF), large-sized single-layer Ti3C2Tx nanosheets were firmly attached to the MS skeleton and enveloped the pores. The obtained Ti3C2Tx/MS composite sponges exhibit a unique multi-cavity structure. Moreover, hydrophobic modification was applied to the composites through the use of two-component silane coupling agents. The silane-modified multi-cavity structured composite sponges demonstrate significant enhancements in conductivity, mechanical strength, and environmental stability. Particularly, the incorporation of 17 wt% CNF leads to a 29.3 dB increases in shielding efficiency (SE) for the composite sponge. The enhancement can be attributed to the high reflectance of electromagnetic waves due to the highly conductive Ti3C2Tx/CNF cavity-membranes, the multiple internal reflections within the multi-cavity structure, and the improved interfacial polarization loss capability facilitated by the abundance of MXene-CNF interfaces.
在超轻三聚氰胺海绵(MS)上沉积 Ti3C2Tx 纳米片材,对于构建机械坚固的高性能电磁干扰(EMI)屏蔽复合材料具有极大的吸引力。然而,由于 Ti3C2Tx 纳米片与三聚氰胺海绵之间的亲和力不足,阻碍了 Ti3C2Tx 材料屏蔽性能潜力的充分发挥。在此,在纤维素纳米纤维(CNF)的帮助下,大尺寸单层 Ti3C2Tx 纳米片被牢固地附着在 MS 骨架上,并包覆了孔隙。获得的 Ti3C2Tx/MS 复合海绵呈现出独特的多腔结构。此外,还使用双组分硅烷偶联剂对复合材料进行了疏水改性。硅烷改性的多腔结构复合海绵在导电性、机械强度和环境稳定性方面都有显著提高。特别是加入 17 wt% 的 CNF 后,复合海绵的屏蔽效率 (SE) 提高了 29.3 dB。这种增强可归因于高导电性 Ti3C2Tx/CNF 空腔膜带来的高电磁波反射率、多空腔结构内的多重内部反射以及大量 MXene-CNF 接口带来的更好的界面极化损耗能力。
Graphene at different scales to synergistically optimize the thermal and mechanical properties of CF/PPBESK composites
Bing Wang, Nan Li, Qingguang Bao, Shan Cheng, Jingyao Feng, Mengting Li, Ning Wang, Zaiyu Wang, Binlin Jiang, Lei Chen, Houquan Hong, Xigao Jian
doi:10.1016/j.compositesb.2024.111692
不同尺度的石墨烯协同优化 CF/PPBESK 复合材料的热性能和机械性能
This paper examined the impact of graphene's different scales on carbon fibre-reinforced thermoplastic composites' thermal and mechanical properties (CFRTPs). Experiments using a mixing design method with graphene content of large, medium, and small scales as variables, thermal conductivity (λ) and mechanical properties (flexural (F), compression (C), and tensile strength (T)) as response values. The thermal-mechanical properties of multi-component composites were analyzed and modelled to improve them. Graphene with different scales could effectively bridge and enhance heat flow transfer along the graphene thermal conductivity network, significantly improving the composite’s thermal conductivity. It was verified that the optimized composites exhibited excellent thermal conductivity (λ = 1.329 W/m·K), 140.3 % higher than that pure composite. Furthermore, the mechanical properties of the optimized composites saw significant enhancements, with flexural strength, compressive strength, and tensile strength increasing by 18.9 %, 22.8 %, and 13.2 %, respectively. Moreover, the optimized composite’s thermal properties and energy storage modulus were also notably improved.
本文研究了不同尺度的石墨烯对碳纤维增强热塑性复合材料热性能和机械性能(CFRTPs)的影响。实验采用混合设计法,以大、中、小尺度的石墨烯含量为变量,导热系数(λ)和机械性能(弯曲强度(F)、压缩强度(C)和拉伸强度(T))为响应值。对多组分复合材料的热机械性能进行了分析和建模,以改善其性能。不同尺度的石墨烯可以有效地架桥并增强热流沿石墨烯导热网络的传递,从而显著提高复合材料的导热性能。实验证明,优化后的复合材料具有优异的热导率(λ = 1.329 W/m-K),比纯复合材料高出 140.3%。此外,优化复合材料的机械性能也有显著提高,抗折强度、抗压强度和抗拉强度分别提高了 18.9%、22.8% 和 13.2%。此外,优化复合材料的热性能和储能模量也有明显改善。
Performance enhancement of silica filled natural rubber nanocomposites using organic deep eutectic solvent
Qiao Li, Hongda Meng, Yihu Song, Qiang Zheng
doi:10.1016/j.compscitech.2024.110744
使用有机深共晶溶剂提高二氧化硅填充天然橡胶纳米复合材料的性能
Silica is an important filler of “green tires” while its dispersion in the aid of silane coupling agents emits volatile organic compounds during rubber compounding and its invariably agglomeration in nonpolar rubber matrices enhances strain softening. Herein a highly active deep eutectic solvent (DES), using stearic acid as hydrogen bond donor and tetrabutylammonium chloride as hydrogen bond acceptor, is used to tailor reinforcement and softening behaviors and to replace the silane coupling agents for preparing volatile organic compounds-free nanocomposites. The results show that DES can regulate the crosslinking network structure of rubber matrix and accelerate the vulcanization by reacting with non-rubber components in natural rubber (NR) and by improving the proportion of disulfidic linkage. Furthermore, DES is able to improve the dispersion of silica, crosslinking density of NR and the interfacial interaction between silica and NR, and slow down the thermo-oxidative aging behavior. It could also weaken the damping and softening accompanying Mullins effect for the nanocomposites vulcanizates at high strains. In comparison with silane, DES endows the nanocomposites with superior vulcanization and mechanical properties, providing guides to mediate the reinforcement and strain softening behaviors and manufacture high-performance “green tires” in an energy-efficient approach.
二氧化硅是 "绿色轮胎 "的重要填充物,但在硅烷偶联剂的帮助下,二氧化硅的分散会在橡胶混炼过程中释放出挥发性有机化合物,而且二氧化硅在非极性橡胶基质中的聚集 会增强应变软化。在此,以硬脂酸为氢键供体、四丁基氯化铵为氢键受体的高活性深共晶溶剂(DES)被用于定制补强和软化行为,并替代硅烷偶联剂制备无挥发性有机化合物的纳米复合材料。研究结果表明,DES 可以调节橡胶基体的交联网络结构,并通过与天然橡胶(NR)中的非橡胶成分发生反应以及提高二硫键的比例来加速硫化。此外,DES 还能改善二氧化硅的分散性、天然橡胶的交联密度以及二氧化硅与天然橡胶之间的界面相互作用,并减缓热氧化老化行为。它还能减弱纳米复合材料硫化胶在高应变下伴随 Mullins 效应产生的阻尼和软化。与硅烷相比,DES 使纳米复合材料具有更优越的硫化性能和机械性能,为调解补强和应变软化行为以及以节能方式制造高性能 "绿色轮胎 "提供了指导。