今日更新:International Journal of Solids and Structures 1 篇,Journal of the Mechanics and Physics of Solids 1 篇,International Journal of Plasticity 1 篇
Peeling of periodically heterogeneous film from rigid substrate at arbitrary peeling angle
Chuang-Shi Shen, Huan-Fang Wang, Fei Yao, Jing-Liang Cui, Bo Zhou, Xi-Ning Zhao, Yong-Wang Zhang, Bo Li, Ze-Wei Li
doi:10.1016/j.ijsolstr.2024.112976
以任意剥离角度从刚性基材上剥离周期性非均匀薄膜
Although it is acknowledged that using periodically heterogeneous film can improve adhesion properties without interface modification, there is still a lack of comprehensive research in the existing literature that specifically investigates the behavior of peeling of such film from rigid substrate at arbitrary peeling angle. To this end, two theoretical models, an accurate and an approximate model, for the peeling of periodically heterogeneous film at arbitrary peeling angle are proposed in this study. The primary focus of the present study is on examining the peeling behavior of such film, with special attention given to the impact of peeling angle on the peeling behavior. Our analysis revealed two unknown peeling behaviors. Firstly, the use of periodically heterogeneous film not only enhance the adhesion performance of its stiff section, but also weakens the adhesion performance of its compliant section. Secondly, the enhancing ratio of adhesion performance does not remain constant, nor does it exhibit a monotonically increasing function with the peeling angle. Instead, it initially increases and then decreases as the peeling angle increases. The weakening ratio of adhesion performance with respect to the peeling angle is similar to that of the enhancing ratio. The influence of several parameters, including the bending stiffness ratio, adhesion energy, bending stiffness of the compliant section, period length of the periodically heterogeneous film, and length fraction of the stiff section, on the peeling of periodically heterogeneous film at arbitrary peeling angle are also studied. Based on the accurate theory, a formula for calculating the peeling force of homogeneous film is also derived. The calculated results using the proposed formula are in excellent agreement with the classical Kendall theory
虽然人们已经认识到,在不改变界面的情况下,使用周期性的非均相薄膜可以改善附着性能,但现有文献中还缺乏全面的研究,专门研究这种薄膜在任意剥离角度下从刚性基体上剥离的行为。为此,本文提出了任意剥离角度下周期性非均质薄膜剥离的精确模型和近似模型。本研究的主要重点是研究这种薄膜的剥离行为,并特别关注剥离角度对剥离行为的影响。我们的分析揭示了两种未知的剥落行为。首先,周期性非均质膜的使用不仅增强了其刚性部分的粘附性能,而且削弱了其柔顺部分的粘附性能。其次,粘附性能的增强比并不是恒定不变的,也不是随剥离角度的变化呈单调递增的函数。相反,它会随着剥离角度的增大先增大后减小。粘附性能随剥离角的减弱比与增强比相似。研究了弯曲刚度比、附着能、柔顺截面的弯曲刚度、周期性非均质膜的周期长度和刚性截面的长度分数等参数对任意剥离角度下周期性非均质膜剥离的影响。在精确理论的基础上,导出了均匀膜剥离力的计算公式。用该公式计算的结果与经典肯德尔理论非常吻合
A Mechanics and Electromagnetic Scaling Law for Highly Stretchable Radio Frequency Electronics
Zichen Zhao, Raudel Avila, Dongjun Bai, Danli Xia, Enxi She, Yonggang Huang, John A. Rogers, Zhaoqian Xie
doi:10.1016/j.jmps.2024.105784
高可拉伸射频电子学的力学与电磁标度律
Many classes of flexible and stretchable bio-integrated electronic systems rely on mechanically sensitive electromagnetic components, such as various forms of antennas for wireless communication and for harvesting energy through coupling with external power sources. This efficient wireless functionality can be important for body area network technologies and can enable operation without the weight and bulky size of batteries for power supply. Recently, antenna designs have received increased attention because their mechanical and electromagnetic properties significantly influence the wireless performance of bio-integrated electronics, particularly under excessive mechanical loads. These mechanical factors are critical for skin-integrated electronics during human motion, as complex skin deformations can damage the conductive traces of antennas, such as those used for near-field communication (NFC), leading to yield or fracture and affecting their electromagnetic stability. Serpentine interconnects have been proposed as a geometric alternative to in-plane circular or rectangular spiral antenna designs to improve the elastic stretchability of the metallic traces in NFC antennas and prevent mechanical fractures. Despite the use of serpentine interconnects within the physiologically relevant strain range for skin (<20%), the electromagnetic stability of the antennas decreases. This instability, reflected by shifts in resonance frequency and scattering parameters due to inductance changes, reduces the antennas' wireless power transfer efficiency and readout range. Therefore, maintaining the electromagnetic stability of antennas, specifically NFC antennas, under various mechanical deformations has become a critical challenge in practical wireless skin-integrated applications, such as sensing and physiological monitoring. Here, we establish a new mechanics and electromagnetic scaling law that quantifies the inductance changes under strain in a rectangular-loop serpentine structure typically used for NFC wireless communication in stretchable electronics. We present a systematic analysis of the antenna's geometric parameters, material properties of the antenna and substrate, and the applied strain on the inductance change. Our findings demonstrate that the relative change of inductance is solely influenced by the serpentine structure's width-radius ratio, arc angle, aspect ratio of the NFC antennas, and the applied strain. Additionally, under physiological strain conditions for the skin, the relative change of inductance can be minimized to preserve the NFC antenna's performance and prevent mechanical fracture and electromagnetic stability loss.
许多种类的柔性和可拉伸的生物集成电子系统依赖于机械敏感的电磁元件,例如用于无线通信的各种形式的天线,以及通过与外部电源耦合来收集能量。这种高效的无线功能对于体域网络技术非常重要,并且可以在不需要电池的重量和体积的情况下进行操作。最近,天线设计受到越来越多的关注,因为它们的机械和电磁特性显着影响生物集成电子的无线性能,特别是在过度机械负载下。在人体运动过程中,这些机械因素对于皮肤集成电子产品至关重要,因为复杂的皮肤变形会损坏天线的导电迹,例如用于近场通信(NFC)的天线,导致屈服或断裂,并影响其电磁稳定性。蛇形互连已被提出作为平面内圆形或矩形螺旋天线设计的几何替代方案,以提高NFC天线中金属迹线的弹性拉伸性并防止机械断裂。尽管在皮肤的生理相关应变范围内(<20%)使用蛇形互连,但天线的电磁稳定性下降。这种不稳定性,反映在谐振频率和散射参数的变化,由于电感的变化,降低了天线的无线功率传输效率和读出范围。因此,保持天线,特别是NFC天线在各种机械变形下的电磁稳定性已成为传感和生理监测等实际无线皮肤集成应用中的关键挑战。在这里,我们建立了一个新的力学和电磁标度定律,量化了在可拉伸电子中通常用于NFC无线通信的矩形环路蛇形结构中应变下的电感变化。我们系统地分析了天线的几何参数、天线和衬底的材料特性以及外加应变对电感变化的影响。我们的研究结果表明,电感的相对变化仅受蛇形结构的宽半径比、弧角、NFC天线的长宽比和外加应变的影响。此外,在皮肤生理应变条件下,可以最小化电感的相对变化,以保持NFC天线的性能,防止机械断裂和电磁稳定性损失。
A dislocation theory-based model for brittle-to-ductile transition in multi-principal element alloys
Zebin Han, Bin Liu, Qihong Fang, Peter K Liaw, Jia Li
doi:10.1016/j.ijplas.2024.104059
基于位错理论的多主元素合金脆-韧转变模型
Multi-principal element alloys (MPEAs) have drawn great interest due to their superior mechanical properties compared to the conventional alloys. However, it is unclear in these two aspects: i) how to predict the brittle-to-ductile transition temperature (BDTT) and fracture toughness of MPEAs using theory and model; ii) how to quantify the influences of the complicated alloy composition variation and microstructural parameter on the BDTT and fracture toughness of MPEAs. These issues are critical to both the underlying mechanisms and practical engineering applications. Here, we develop a dislocation theory-based model accounting for the modified lattice friction stress model, the composition-dependent strength model, and the critical energy model to determine the BDTT and corresponding fracture toughness in body-centered cubic MPEAs. The calculated yield stress and BDTT of the as-cast MPEA agree well with the experiments. Subsequently, the BDTT and fracture toughness of TiVNbTa-based MPEAs are obtained as a function of the element concentration fluctuation. The effects of microstructure parameters, such as component randomness and short-range ordering described by the standard deviation of the interplaner potential perturbation and short-range correlation length, on the BDTT and fracture toughness are further elucidated. Importantly, a microstructure-based BDT criterion is proposed to evaluate whether MPEA is ductile or brittle at a given temperature. These results are conducive to the development and application of MPEAs in extreme environments.
多主元素合金(mpea)由于其优越的力学性能而受到人们的广泛关注。然而,如何利用理论和模型预测mpea的脆-韧转变温度和断裂韧性,这两个方面还不清楚;ii)如何量化复杂合金成分变化和显微组织参数对mpea的BDTT和断裂韧性的影响。这些问题对于潜在机制和实际工程应用都是至关重要的。本文建立了基于位错理论的修正晶格摩擦应力模型、成分相关强度模型和临界能量模型,以确定体心立方mpea的BDTT和相应的断裂韧性。铸态MPEA的屈服应力和BDTT计算值与试验值吻合较好。随后,得到了基于tivnbta的mpea的BDTT和断裂韧性随元素浓度波动的函数。进一步阐明了由层间势扰动标准差和短程相关长度描述的组分随机性和短程有序等微观结构参数对BDTT和断裂韧性的影响。重要的是,提出了一种基于微观结构的BDT准则来评估MPEA在给定温度下是延性还是脆性。这些结果有利于mpea在极端环境下的开发和应用。