今日更新:Composite Structures 1 篇,Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 1 篇,Composites Science and Technology 1 篇
Experimental behaviour and design model of FRP-UHPC-steel tubular columns under monotonic axial compression
Zhang Bing, Zhou Chong, Zhang Sumei, Lin Shuhong, Fan Zhihong, Peng Yutao, Sun Jiaming, Lin Guan
doi:10.1016/j.compstruct.2024.118416
frp - uhpc -钢管柱在单调轴压作用下的试验性能及设计模型
By integrating structural steel with Fiber-Reinforced Polymer (FRP) and Ultra-High Performance Concrete (UHPC), FRP-UHPC-steel tubular columns (FUSTs) emerge as innovative composite members that offer exceptional corrosion resistance and lightweight properties. FUSTs hold significant potential for use as thin-walled tubular columns working in harsh environments, such as wind turbines and high-voltage transmission towers. To obtain in-depth understanding of key parameters including the steel fiber ratio of UHPC, the specimen void ratio and the FRP thickness, this paper tested 24 specimens to evaluate their compressive behaviour, including 18 FUSTs and 6 UHPC-filled FRP tubes (UCFFTs). Experimental results showed that: (1) FUSTs demonstrated ductile behavior with significant strain enhancement and notable strength improvement; (2) the steel fibers in UHPC had marginal influences on the ultimate condition of FUSTs; (3) a larger inner void had a general effect to lead to more localized rupture for the FRP tube; (4) the FRP thickness was the predominant influencing factor on both the general shape and the ultimate point of the normalized axial stress–strain curves. Finally, a design model was proposed, which was able to capture the general shape of the axial load–strain curves, and could generate reasonably accurate predictions for the peak load.
通过将结构钢与纤维增强聚合物(FRP)和超高性能混凝土(UHPC)相结合,FRP-UHPC钢管柱(FUSTs)成为创新的复合材料构件,具有卓越的耐腐蚀性和轻质性能。fsts在恶劣环境中作为薄壁管柱,如风力涡轮机和高压输电塔,具有巨大的应用潜力。为了深入了解UHPC的钢纤维比、试件空隙率和FRP厚度等关键参数,本文对24个试件进行了压缩性能评估,其中包括18个FUSTs和6个UHPC填充FRP管(UCFFTs)。试验结果表明:(1)FUSTs具有显著的应变增强和强度提高的延性;(2) UHPC中钢纤维对fsts极限状态的影响较小;(3)较大的内空隙对玻璃钢筒的局部破裂有普遍影响;(4) FRP厚度是影响归一化轴向应力-应变曲线总体形状和终点的主要因素。最后,提出了一个设计模型,该模型能够捕捉轴向载荷-应变曲线的一般形状,并能够合理准确地预测峰值载荷。
Revolutionizing textile: Advanced techniques for superior thermal conductivity
Yang Hong, Zhanxiao Kang, Jintu Fan
doi:10.1016/j.compositesa.2024.108380
革命性的纺织品:先进的技术,优越的导热性
Improving thermal conductivity in textile/composites is crucial for heat dissipation in apparel and engineering. Apparel textiles’ thermal conductivities rarely exceed 1.0 W/(m·K), limiting efficient personal thermal management. Advances in silver conductive yarn and heat-stretched polyethylene show promise for ultra-high thermal conductivity materials. In electronic packaging, materials’ thermal conductivities rarely exceed 40 W/(m·K), causing overheating and reduced reliability. Techniques like freeze-drying and templating can enhance boron nitride composites’ thermal conductivity. Aerospace and automotive composites with mechanical and flame-retardant properties rarely exceed 120 W/(m·K), leading to potential safety hazards. Recent advancements indicate that mechanical structure enhancement and chemical surface modification can improve carbon composites’ thermal conductivity. Understanding existing enhancement techniques and mechanisms is essential. This paper reviews these techniques, discussing their potentials and limitations for future high thermal conductive textiles and composites development.
提高纺织/复合材料的导热性是服装和工程散热的关键。服装纺织品的热导率很少超过1.0 W/(m·K),限制了有效的个人热管理。银导电纱和热拉伸聚乙烯的进展显示出超高导热材料的前景。在电子封装中,材料的热导率很少超过40 W/(m·K),导致过热和可靠性降低。冷冻干燥和模板等技术可以提高氮化硼复合材料的导热性。具有机械和阻燃性能的航空航天和汽车复合材料很少超过120 W/(m·K),从而导致潜在的安全隐患。近年来的研究进展表明,机械结构增强和化学表面改性可以提高碳复合材料的导热性。理解现有的增强技术和机制是必要的。本文综述了这些技术,讨论了它们在未来高导热纺织品和复合材料发展中的潜力和局限性。
Recent Approaches of Interfaces Strengthening in Fibre Metal Laminates: Processes, Measurements, Properties and Numerical Analysis
Umut Bakhbergen, Fethi Abbassi, Gulnur Kalimuldina, Reza Montazami, Essam Shehab, Sherif Araby
doi:10.1016/j.compositesb.2024.111744
金属纤维层合板界面强化的新方法:工艺、测量、性能和数值分析
Recently, there is a pressing need for high-performance and lightweight structural materials in aircraft and automobile industry; fibre metal laminates (FMLs) are suggested ideal candidates for aviation industry. FMLs are hybrid composite material comprised thin-metal sheets and fibre-reinforced polymers (FRPs). By combining the features of both components, FMLs possess high tolerance to fatigue damage, exceptional impact resistance and an outstanding weight-to-strength ratio. However, maintaining high structure integrity of FML layers – without debonding – remains the primary challenge in FMLs-based structures. The present review explores the recent developments in manufacturing techniques and surface treatments aimed at enhancing the interfacial strength between FML layers. Recently, adding nanofillers into FRPs and FMLs is gaining attention. These nanofillers can enhance mechanical performance of FRPs/FMLs, strengthen the interface in FMLs; and add functionalities such as gas and water impermeability. The article discusses the recent studies on employing nanofillers in FMLs and adhesively bonded structures; and their role (nanofillers) in enhancing the crack resistance of FMLs. It also explores failure mechanisms in FMLs through experimental methods and advanced numerical simulations. A comprehensive review of the existing studies assists in understanding the complex failure mechanisms, aiming to find optimal input conditions that yield desired mechanical performance. Furthermore, the article introduces machine learning techniques in adhesively bonded structures and potential application in FMLs-related research. The article concludes with perspectives on the limitations, current challenges, and future prospects for FMLs and nanofiller-reinforced FMLs.
近年来,飞机和汽车工业对高性能、轻量化结构材料的需求日益迫切;金属纤维层压板(FMLs)是航空工业的理想选择。FMLs是由金属薄板和纤维增强聚合物(frp)组成的杂化复合材料。结合这两种成分的特点,FMLs具有高的疲劳损伤耐受性,卓越的抗冲击性和出色的重量强度比。然而,保持FML层的高结构完整性(不脱粘)仍然是基于FML结构的主要挑战。本文综述了旨在提高FML层间界面强度的制造技术和表面处理的最新进展。近年来,在frp和fml中添加纳米填料的研究日益受到关注。这些纳米填料可以提高frp /FMLs的力学性能,增强FMLs中的界面;并增加诸如气体和水的不渗透性等功能。本文综述了近年来纳米填料在FMLs和粘接结构中的应用研究进展;以及它们(纳米填料)在增强FMLs抗裂性中的作用。通过实验方法和先进的数值模拟,探讨了FMLs的破坏机制。对现有研究的全面回顾有助于理解复杂的失效机制,旨在找到产生理想力学性能的最佳输入条件。此外,本文还介绍了机器学习技术在粘合结构中的应用以及在fml相关研究中的潜在应用。文章最后对FMLs和纳米填料增强FMLs的局限性、当前挑战和未来前景进行了展望。
Facile Chemical Surface Modification of Boron Nitride Platelets and Improved Thermal and Mechanical Properties of Their Polymer Compounds for 2.5D/3D Packaging Applications
Zihao Lin, Jiaxiong Li, Zhijian Sun, Andrew D. Fang, Keyi Han, Shu Jia, Yao-Hao Liu, Michael J. Adams, Kyoung-sik Moon, Ching-Ping Wong
doi:10.1016/j.compscitech.2024.110778
用于2.5D/3D包装的氮化硼薄片的简单化学表面改性及其聚合物化合物的热力学性能的改善
Thermally conductive yet electrically insulative epoxy composites are sought after as encapsulation materials to tackle the heat dissipation challenges in modern electronics. In this work, we developed a novel one-step and facile solvothermal reflux method using a high-boiling-point solvent to surface-modify hexagonal boron nitride (h-BN) with glycine. By refluxing glycine at high temperature, amino functional groups are grafted onto the BN surface, which can enhance the affinity of fillers for epoxy and reduce the interfacial thermal resistance of the filler/epoxy composites. We investigated the mechanism of glycine-grafted layer formation, optimizing reactant mass ratios for enhanced interfacial thermal transport. The resulting BN@G11/epoxy composites exhibit a remarkable thermal conductivity of 1.04 W/mK at 30 wt% modified-BN loading, representing a 477.8% increase over neat epoxy and 57.5% higher than h-BN/epoxy composites at equivalent BN filler loading. Additionally, these composites demonstrate improved thermomechanical properties, confirming the strengthened BN/epoxy interface bonding using modified BN fillers. Compared to other surface treatment methods, this solvothermal reflux approach stands out for its scalability and cost-effectiveness. This scalable and eco-friendly innovation presents a competitive strategy for designing polymer-based composites for thermal management, catering to the demands of future 2.5D/3D semiconductor packaging.
导热且绝缘的环氧复合材料作为封装材料受到追捧,以解决现代电子产品中的散热挑战。在这项工作中,我们开发了一种新的一步和简单的溶剂热回流方法,使用高沸点溶剂对六方氮化硼(h-BN)进行甘氨酸表面改性。通过高温回流甘氨酸,将氨基官能团接枝到BN表面,增强填料对环氧树脂的亲和力,降低填料/环氧复合材料的界面热阻。我们研究了甘氨酸接枝层形成的机制,优化了反应物质量比以增强界面热传递。所得BN@G11/环氧复合材料在30 wt%的改性BN载荷下的导热系数为1.04 W/mK,比纯环氧提高了477.8%,比同等BN填料载荷下的h-BN/环氧复合材料高57.5%。此外,这些复合材料表现出改善的热机械性能,证实了改性BN填料增强了BN/环氧界面结合。与其他表面处理方法相比,溶剂热回流法因其可扩展性和成本效益而脱颖而出。这种可扩展且环保的创新为设计用于热管理的聚合物基复合材料提供了一种具有竞争力的策略,以满足未来2.5D/3D半导体封装的需求。