今日更新:International Journal of Solids and Structures 2 篇,Mechanics of Materials 1 篇,International Journal of Plasticity 1 篇,Thin-Walled Structures 1 篇
Machine learning applications in sheet metal constitutive Modelling: A review
Armando E. Marques, Tomás G. Parreira, André F.G. Pereira, Bernardete M. Ribeiro, Pedro A. Prates
doi:10.1016/j.ijsolstr.2024.113024
机器学习在钣金本构建模中的应用综述
The numerical simulation of sheet metal forming processes depends on the accuracy of the constitutive model used to represent the mechanical behaviour of the materials. The formulation of these constitutive models, as well as their calibration process, has been an ongoing subject of research. In recent years, there has been a special focus on the application of data-driven techniques, namely Machine Learning, to address some of the difficulties of constitutive modelling. This review explores different methodologies for the application of Machine Learning algorithms to sheet metal constitutive modelling. These methodologies include the use of machine learning algorithms in the identification of constitutive model parameters and the replacement of the constitutive model by a metamodel created by a machine learning algorithm. A discussion about the merits and limitations of the different methodologies is presented, as well as the identification of some possible gaps in the literature that represent opportunities for future research.
板料成形过程的数值模拟取决于用来表示材料力学行为的本构模型的准确性。这些本构模型的制定,以及它们的校准过程,一直是一个正在进行的研究课题。近年来,人们特别关注数据驱动技术的应用,即机器学习,以解决本构建模的一些困难。这篇综述探讨了机器学习算法应用于金属板本构建模的不同方法。这些方法包括使用机器学习算法来识别本构模型参数,以及用机器学习算法创建的元模型替换本构模型。讨论了不同方法的优点和局限性,并指出了文献中可能存在的一些空白,这些空白代表了未来研究的机会。
On an efficient global/local stochastic methodology for accurate stress analysis, failure prediction and damage tolerance of laminated composites
P. Minigher, A. Arteiro, A. Turon, J. Fatemi, S. Guinard, L. Barrière, P.P. Camanho
doi:10.1016/j.ijsolstr.2024.113026
基于有效全局/局部随机方法的层合复合材料精确应力分析、失效预测和损伤容限研究
The quantification of uncertainties in the mechanical response of composite structures can be a computationally demanding task. This is due both to the number of uncertain parameters in a real study case and the complexity of the model to be analyzed. In this paper, an efficient global/local approach to estimate the uncertainties of the quantities of interest in specific regions of interest with limited computational effort is proposed. This is achieved by refining only locally the model taking advantage of Refined Structural Theories. At the same time, since the variance of the uncertain parameters is usually relatively small, the stochastic analysis is dealt with a sensitivity study carried out both in the global and in the local model. In this way, it is possible to assess the influence of global and local uncertain parameters in the same submodeling analysis. The methodology presented is applied to several study cases of interest. The results focus on obtaining probabilistic distributions of the stress field that can be later used in failure criteria to evaluate the subsequent distribution of the failure index. Furthermore, a damage tolerance study case is investigated, showing good correlation with the reference Monte Carlo simulations.
复合材料结构力学响应的不确定性量化是一项计算要求很高的任务。这是由于实际研究案例中不确定参数的数量和待分析模型的复杂性。本文提出了一种有效的全局/局部方法,在有限的计算量下估计特定兴趣区域中兴趣数量的不确定性。这是通过利用精炼结构理论对模型进行局部精炼来实现的。同时,由于不确定参数的方差通常相对较小,因此对随机分析进行了全局和局部模型的敏感性研究。这样,就可以在同一子模型分析中评估全局和局部不确定参数的影响。所提出的方法被应用于几个感兴趣的研究案例。结果着重于获得应力场的概率分布,该概率分布可用于制定破坏准则,以评估破坏指数的后续分布。此外,还研究了一个损伤容限研究案例,结果与蒙特卡罗模拟结果具有良好的相关性。
Mesoscale modeling of deformations and defects in thin crystalline sheets
Lucas Benoit–Maréchal, Ingo Nitschke, Axel Voigt, Marco Salvalaglio
doi:10.1016/j.mechmat.2024.105114
薄晶片变形和缺陷的中尺度模拟
We present a mesoscale description of deformations and defects in thin, flexible sheets with crystalline order, tackling the interplay between in-plane elasticity, out-of-plane deformation, as well as dislocation nucleation and motion. Our approach is based on the Phase-Field Crystal (PFC) model, which describes the microscopic atomic density in crystals at diffusive timescales, naturally encoding elasticity and plasticity effects. In its amplitude expansion (APFC), a coarse-grained description of the mechanical properties of crystals is achieved. We introduce surface PFC and surface APFC models in a convenient height-function formulation encoding deformation in the normal direction. This framework is proven consistent with classical aspects of strain-induced buckling, defect nucleation on deformed surfaces, and out-of-plane relaxation near dislocations. In particular, we benchmark and discuss the results of numerical simulations by looking at the continuum limit for buckling under uniaxial compression and at evidence from microscopic models for deformation at defects and defect arrangements, demonstrating the scale-bridging capabilities of the proposed framework. Results concerning the interplay between lattice distortion at dislocations and out-of-plane deformation are also illustrated by looking at the annihilation of dislocation dipoles and systems hosting many dislocations. With the novel formulation proposed here, and its assessment with established approaches, we envision applications to multiscale investigations of crystalline order on deformable surfaces.
我们提出了一个中尺度的变形和缺陷的描述,在薄,柔性片与晶体顺序,处理面内弹性,面外变形,以及位错成核和运动之间的相互作用。我们的方法基于相场晶体(PFC)模型,该模型描述了晶体在扩散时间尺度上的微观原子密度,自然地编码了弹性和塑性效应。在其振幅扩展(APFC)中,实现了晶体力学性能的粗粒度描述。我们以一种方便的高度函数形式引入表面PFC和表面APFC模型,编码在法向上的变形。这一框架被证明与经典的应变诱导屈曲、变形表面上的缺陷成核和位错附近的面外松弛相一致。特别地,我们通过观察单轴压缩下屈曲的连续极限以及缺陷和缺陷排列变形的微观模型的证据,对数值模拟的结果进行了基准测试和讨论,展示了所提出框架的尺度桥接能力。通过观察位错偶极子的湮灭和包含许多位错的系统,还说明了位错处晶格畸变与面外变形之间相互作用的结果。通过本文提出的新公式及其与既定方法的评估,我们设想应用于可变形表面上晶体秩序的多尺度研究。
Strong and Ductile Low Carbon Low Alloy Steels with Multiphase Bimodal Microstructure
Chenhe Wang, Ran Chen, Chenyang Wang, Yumeng Zhang, Xiaodong Wang, Mingwei Chen
doi:10.1016/j.ijplas.2024.104097
具有多相双峰组织的高韧性低碳低合金钢
Restrained by the strength-ductility tradeoff, it is still challenging to develop advanced high-strength low carbon low alloy (LCLA) steels with superior strength-ductility combinations and cost-effectiveness to satisfy industry demands. In this study, an innovative 2-cyclic quenching and partitioning (Q&P) heat treatment was developed to produce a novel LCLA steel with the optimized microstructure, in which a bimodal grain size distribution across various constituent phases was achieved. Tensile test results show that the 2-cyclic Q&P LCLA steel exhibits excellent mechanical properties with a uniform elongation, close to 18%, nearly triple that of conventional Q&P LCLA steel while maintaining a tensile strength above 1 GPa. To reveal the underlying mechanisms of such exceptional strength-elongation synergy, the detailed deformation behaviors of the developed LCLA steel were characterized while the evolution of hetero-deformation-induced (HDI) stress and effective stress was investigated from the perspective of the dislocation model. It is indicated that, with increasing strain, the heterogeneous structures promote strong strain partitioning which leads to extensive geometrically necessary dislocations (GNDs) pile-ups at hetero-interface and persistently strong HDI strengthening effect, and produce the coordinated deformation among constituent phases to realize dislocation forest strengthening, collectively contributing to the enhanced work hardening capacity and hence overcoming the strength-ductility tradeoff. This study provides a new processing strategy for developing strong and ductile LCLA steels.
受强度-延性平衡的制约,开发出具有优异强度-延性组合和成本效益的先进高强度低碳低合金(LCLA)钢仍是一项挑战。在本研究中,开发了一种创新的2循环淬火和分配(Q&P)热处理方法,以生产具有优化组织的新型LCLA钢,其中实现了不同组成相的双峰晶粒尺寸分布。拉伸试验结果表明,2循环Q&P LCLA钢具有优异的力学性能,伸长率接近18%,是常规Q&P LCLA钢的近3倍,同时抗拉强度保持在1 GPa以上。为了揭示这种特殊的强度-延伸协同作用的潜在机制,研究了所开发的LCLA钢的详细变形行为,并从位错模型的角度研究了异质变形诱导(HDI)应力和有效应力的演变。结果表明,随着应变的增加,非均质结构促进了强应变分配,导致异质界面上广泛的几何必要位错(GNDs)堆积和持续强的HDI强化效应,并在各组成相之间产生协调变形,实现位错森林强化,共同提高了加工硬化能力,从而克服了强度-塑性平衡。本研究为开发高韧性LCLA钢提供了一种新的加工策略。
An investigation of vibration responses for bolted composite flanged-cylindrical shells considering material and joint nonlinearity
Xiaofeng Liu, Wei Sun, Honghao Liu, Hongwei Ma, Dongxu Du, Hui Li
doi:10.1016/j.tws.2024.112335
考虑材料非线性和节点非线性的螺栓复合法兰-圆柱壳振动响应研究
In this paper, a thorough investigation into the vibration response of bolted composite flanged-cylindrical shell structures, considering the material nonlinearity of carbon fiber-reinforced polymer composites (CFRP) and the joint nonlinearity of bolt connections, is presented. Firstly, a general semi-analytical modeling method for bolted composite flanged-cylindrical shell is developed based on the first-order shear deformation theory (FSDT) and the energy method. In this method, material nonlinearity is introduced by accounting for the frequency-strain dependency of material parameters. A joint model with non-uniform distribution parameters and dynamic boundaries is proposed to simulate the interface pressure distribution and nonlinear mechanical behavior of bolted joints. Then, for the general numerical model that incorporates both types of nonlinearities, the ability to accurately predict the nonlinear vibration behavior of a bolted composite flanged-cylindrical shell is demonstrated through experimental testing. Finally, an in-depth discussion is conducted on the influence of fiber layup patterns and bolt numbers on the nonlinear vibration response of the bolted composite flanged-cylindrical shells. The conducted analysis indicates that the proposed method can offer utility to designers, empowering them with the insights necessary for the dynamic optimization of such structures.
考虑碳纤维增强聚合物复合材料(CFRP)的材料非线性和螺栓连接的连接非线性,对螺栓复合材料法兰-圆柱壳结构的振动响应进行了深入的研究。首先,基于一阶剪切变形理论(FSDT)和能量法,建立了螺栓复合材料法兰-圆柱壳的通用半解析建模方法;该方法考虑了材料参数的频率-应变关系,引入了材料的非线性。提出了一种具有非均匀分布参数和动态边界的连接模型,用于模拟螺栓连接的界面压力分布和非线性力学行为。然后,通过实验验证了结合两种非线性因素的通用数值模型能够准确预测螺栓复合材料法兰-圆柱壳的非线性振动行为。最后,深入讨论了纤维铺层方式和螺栓数对螺栓复合法兰-圆柱壳非线性振动响应的影响。所进行的分析表明,所提出的方法可以为设计人员提供实用工具,使他们能够对此类结构的动态优化提供必要的见解。