首页/文章/ 详情

【新文速递】2024年8月15日复合材料SCI期刊最新文章

4天前浏览81

   

今日更新:Composite Structures 1 篇,Composites Part A: Applied Science and Manufacturing 2 篇,Composites Part B: Engineering 2 篇,Composites Science and Technology 2 篇

Composite Structures

Study on the effect of multi-factor compound action on long-term tensile performance of GFRP composite pipe and life prediction analysis

Dandan Liao, Tan Gu, Jing Yan, Zhiming Yu, Jingjie Dou, Min Hu, Fei Zhao, Jie Liu, Jun Wang

doi:10.1016/j.compstruct.2024.118478

多因素复合作用对玻璃钢复合管材长期拉伸性能的影响及寿命预测分析

In this work, the glass fiber reinforced plastic (GFRP) composite pipes used as sewerage pipes in oil and gas field environments were studied. The accelerated aging experiments were carried out under the simulated environments of three typical oil field media which including circulating air, simulated produced water and standard simulated oil. Scanning electron microscopy (SEM) was adopted to observe the microscopic morphology of the aged GFRP tubes under the three conditions. The microstructural characteristics of the aged tubes and the evolution process of internal defects were also analyzed and evaluated in combination with micro-CT technology. The attenuation pattern of the hoop tensile strength of the aged pipes was measured via the separation disk method, and the service life prediction was carried out based on the Arrhenius theory with the hoop strength as the life index. The results show that the accumulation of aging time and continuous heat input will aggravate the expansion of internal pores and cause the aggregation of small-volume defects into large-volume defects. Especially in the simulated oil environment, which has the highest sensitivity to defects. The maximum porosity reaching 1.5 % and the maximum volume of individual defects exceeding 106 μm3 after aging for 4000 h at 95 °C. The thermal aging process under the three environmental conditions had similar aging characteristics, and interfacial damage of the glass fibers was observed in all of them. The variability of hydrothermal aging is related to the hydrolytic behavior of the glass fibers, which is associated with the progressive dissolution damage of the SiO2 network in the glass fibers, as well as the breaking of silane bonds. Thus, the hydrothermal environment had the most significant effect on the hoop tensile strength decay. Ultimately, 75 % strength retention was taken as the end-of-life indicator. The predicted service life based on the Arrhenius model for the three environments of thermo-oxygen, hydrothermal and simulated oil were 23.5, 23.1 and 28.5 years at 20 °C, and 12.2, 4.9 and 10.3 years at 40 °C, respectively.

本文对玻璃钢(GFRP)复合管道作为油气田环境污水管道进行了研究。在循环空气、模拟采出水和标准模拟油三种典型油田介质的模拟环境下进行了加速老化试验。采用扫描电镜(SEM)观察了三种条件下时效GFRP管的微观形貌。结合显微ct技术,对时效管的显微组织特征和内部缺陷的演变过程进行了分析和评价。采用分离盘法测量了老化管材的环向抗拉强度衰减规律,并基于Arrhenius理论,以环向抗拉强度为寿命指标进行了寿命预测。结果表明:时效时间的累积和持续的热输入会加剧内部气孔的膨胀,导致小体积缺陷聚集成大体积缺陷;特别是在模拟油环境中,对缺陷的敏感性最高。95 ℃时效4000 h后,最大孔隙率达到1.5 %,单个缺陷最大体积超过106 μm3。三种环境条件下的热老化过程具有相似的老化特征,均出现了玻璃纤维界面损伤。水热老化的变异性与玻璃纤维的水解行为有关,这与玻璃纤维中SiO2网络的逐渐溶解破坏以及硅烷键的断裂有关。因此,热液环境对环向拉伸强度衰减的影响最为显著。最终以75% %的强度保留率作为寿命终止指标。基于Arrhenius模型的热氧、热液和模拟油三种环境的预测寿命分别为:20 °C时的23.5、23.1和28.5 年,40 °C时的12.2、4.9和10.3 年。


Composites Part A: Applied Science and Manufacturing

Constructing polyimide-based nanocomposite dielectrics with superior high‐temperature energy storage performance via using ternary structure strategy

Ao Xu, Jinlong Zhou, Hao Tan, Hao Zhong, Liwen Deng, Hang Luo, Sheng Chen

doi:10.1016/j.compositesa.2024.108405

 

采用三元结构策略构建具有优异高温储能性能的聚酰亚胺基纳米复合电介质

To maintain low leakage current and energy storage stability of polyimide at high temperature and electric field, ternary structure strategy is used to construct polyimide-based nanocomposite dielectrics, relating to cross-linked structure, sandwich structure and inorganic filler structure. Based on synergistic effect, energy storage properties of crosslinked polyimide-based sandwich‐structured nanocomposite films is significantly improved, in which cross-linked polyimide composited layers with 2 wt% hexagonal boron nitride nanosheets are selected as two outer insulating layers and cross-linked polyimide composited layer with 1 wt% barium titanate nanoparticles is employed as central polarization layer. When volume ratio of middle polarization layer is 10 % (denoted as N-10 T-N), the maximum Ud of 11.6 J/cm3 and η of 87 % are achieved at room temperature. At 150 °C, the Ud of N-10 T-N is 5.1 J/cm3. This study provides the experience for the development of polyimide dielectrics with high capacitive properties over a wide temperature range.

为了保持聚酰亚胺在高温和电场下的低漏电流和储能稳定性,采用了三元结构策略来构建聚酰亚胺基纳米复合电介质,即交联结构、夹层结构和无机填料结构。在协同效应的基础上,交联聚酰亚胺基夹层结构纳米复合薄膜的储能性能得到显著提高,其中交联聚酰亚胺复合层与 2 wt%的六方氮化硼纳米片组成两层外绝缘层,交联聚酰亚胺复合层与 1 wt%的钛酸钡纳米颗粒组成中间极化层。当中间极化层的体积比为 10%(记为 N-10 T-N)时,室温下的最大 Ud 为 11.6 J/cm3,η 为 87%。在 150 °C 时,N-10 T-N 的 Ud 为 5.1 J/cm3。这项研究为开发在宽温度范围内具有高电容特性的聚酰亚胺电介质提供了经验。


Development of a novel characterization model for innovative bionic helical carbon fiber tows

Z.C. He, S.H. Li, H.L. Tan, Eric Li, H. Gao, C.F. Qin, Y.B. Wang

doi:10.1016/j.compositesa.2024.108406

 

新型仿生螺旋碳纤维束表征模型的建立

The design of bionic helical structures significantly enhances load-bearing capacity and impact resistance, demonstrating great potential for mechanical property improvement. However, there is still a lack of precise characterization models for the helical structures of carbon fibers, which constrains their potential in engineering applications. This paper successfully fabricated helical carbon fiber tows using a carbon fiber twisting technique and introduced a novel intersecting circular cross-section model to thoroughly investigate the influence of the helical structure on the mechanical properties of carbon fiber tows. Tensile test results show that at a twist angle of 5°, the helical structure increases the tensile strength and fracture toughness of carbon fiber tows by 13.6% and 34.3%, respectively. Additionally, the introduction of complex structures such as helices significantly influences the material’s modulus, and precise modulus prediction is crucial for material optimization and practical application. Based on the newly proposed model, a modulus prediction model is developed, demonstrating higher predictive accuracy than traditional models with a prediction error of 2.8%. Finite element simulations further validate the practicality and superiority of the intersecting circular cross-section model. Compared to traditional models, the predictions of the novel model are closer to experimental data, with a prediction error below 2%, emphasizing the significant impact of microstructures on macroscopic properties and offering a new perspective for modeling complex material systems. These findings provide crucial theoretical and methodological support for the design and performance optimization of carbon fiber materials.

仿生螺旋结构的设计显著提高了结构的承载能力和抗冲击能力,在力学性能改善方面具有很大的潜力。然而,目前对于碳纤维螺旋结构还缺乏精确的表征模型,限制了其在工程上的应用潜力。本文采用碳纤维捻制技术成功制备了螺旋碳纤维束,并引入了一种新型的相交圆形截面模型,深入研究了螺旋结构对碳纤维束力学性能的影响。拉伸试验结果表明,当扭转角为5°时,螺旋结构可使碳纤维束的抗拉强度和断裂韧性分别提高13.6%和34.3%。此外,螺旋等复杂结构的引入会显著影响材料的模量,精确的模量预测对于材料优化和实际应用至关重要。在此基础上建立了模量预测模型,预测误差为2.8%,比传统模型具有更高的预测精度。有限元仿真进一步验证了交圆截面模型的实用性和优越性。与传统模型相比,该模型的预测更接近实验数据,预测误差在2%以下,强调了微观结构对宏观性能的重要影响,为复杂材料系统的建模提供了新的视角。这些发现为碳纤维材料的设计和性能优化提供了重要的理论和方法支持。


Composites Part B: Engineering

4D printing bio-inspired chiral metamaterials for flexible sensors

Xiaozhou Xin, Zhicheng Wang, Chengjun Zeng, Cheng Lin, Liwu Liu, Yanju Liu, Jinsong Leng

doi:10.1016/j.compositesb.2024.111761

用于柔性传感器的4D打印仿生手性超材料

Chiral metamaterials were a typical metamaterial configuration, which had broad application prospects in vibration isolation, energy absorption and other fields. Although 4D-printed chiral metamaterials have been investigated by introducing stimulus-responsive materials to achieve programmable properties of metamaterials, chiral metamaterials are mostly fabricated by single materials, which limits the adjustable domains of the mechanical properties and the design freedom of metamaterials. In this work, inspired by the configuration of collagen fibers of biological tissues, the bio-inspired chiral metamaterials with wave ligaments were developed. The bi-phase (TPE@PLA-SMP) composite chiral metamaterials were fabricated by combining active phase (shape memory polylactic acid, PLA-SMP) with passive phase (thermoplastic elastomer, TPE). The influences of geometric parameters, ligament gradient forms, and TPE distribution modes on the mechanical properties of the developed metamaterials were characterized. When the TPE was distributed at 0° and 45°, the deformation of the mechanical metamaterials occurred mainly in the TPE cells, resulting in the J-shaped displacement-force curve. The programmable and reconfigurable properties of the metamaterials (including configuration, and energy absorption performance) under thermal stimulation were demonstrated. The specific energy absorption (SEA) of the metamaterial 2θ=π/2 was realized to transform between 0.92 kJ/kg and 0.38 kJ/kg by shape memory programming. Flexible sensors based on TPE@PLA-SMP composite metamaterials were developed by filling CNC-CNT@PVA composite hydrogels (minimum resistivity 8.1 Ω•m), which enabled stable output of electrical signals under repeated loads. A motion state monitor was developed and realized to monitor the wearer's movement such as running, demonstrating its potential application prospects in fields such as flexible electronics.

手性超材料是一种典型的超材料构型,在隔振、吸能等领域具有广阔的应用前景。虽然通过引入刺 激响应材料来实现超材料的可编程性能,已经对4d打印的手性超材料进行了研究,但手性超材料大多是由单一材料制成的,这限制了超材料力学性能的可调域和设计自由度。本研究受生物组织胶原纤维结构的启发,开发了具有波状韧带的仿生手性超材料。将主动相(形状记忆聚乳酸,PLA-SMP)与被动相(热塑性弹性体,TPE)相结合,制备了双相(TPE@PLA-SMP)复合手性超材料。研究了几何参数、韧带梯度形式和TPE分布方式对制备的超材料力学性能的影响。当TPE分布在0°和45°时,机械超材料的变形主要发生在TPE胞内,形成j型的位移-力曲线。在热刺 激下,证明了超材料的可编程和可重构性能(包括结构和能量吸收性能)。通过形状记忆编程实现了超材料2θ=π/2的比能吸收(SEA)在0.92 kJ/kg ~ 0.38 kJ/kg之间的转换。通过填充CNC-CNT@PVA复合水凝胶(最小电阻率8.1 Ω•m),开发了基于TPE@PLA-SMP复合超材料的柔性传感器,可在重复载荷下稳定输出电信号。开发并实现了一种运动状态监测器,用于监测佩戴者的跑步等运动,展示了其在柔性电子等领域的潜在应用前景。


Experimental evaluation of the use of cruciform specimens for biaxial stability analysis

M.C. Serna Moreno, S Horta Muñoz

doi:10.1016/j.compositesb.2024.111764

十字形试样用于双轴稳定性分析的实验评价

Novel research is proposed about the suitability of cruciform specimens for estimating the stress-strain response and buckling modes of flat laminates under equibiaxial compression. The experimental challenge lies in determining whether the specimen design and test procedure can be adequate to observe geometric instability at the coupon scale with small dimensions of the tested region. Although the literature on composite buckling is extensive, the number of studies that include experimental biaxial testing of flat laminates is limited, particularly when considering strong flexural-torsional coupling. In this work the region of interest of the cruciform specimen consists of a carbon-fibre reinforced [∓45]S laminate with shape and boundary conditions close to a clamped square plate. For the first time, the buckling mode of an anisotropic laminate is observed in the central region of a cross-shaped specimen using 3D deflection surface data recorded by Digital Image Correlation. The effect of flexural-torsional coupling at the bifurcation onset is experimentally corroborated through the orientation of the buckling mode, which is analytically utilized to quantify the proportion between bending and twist moments. Non-linearities exhibited in the stress-strain evolution of the biaxially loaded region are verified to be independent of the response of the sample’s arms. Furthermore, no previous experimental investigation has shown the differences in local strain gauge measurements induced by the stress state at the ply level. Additionally, this work adapts the method for strength reduction to estimate the real critical stress of a bi-compressed laminate.

对十字形试样在等双轴压缩条件下的应力应变响应和屈曲模态的适用性进行了新的研究。实验挑战在于确定试样设计和测试程序是否足以观察小尺寸测试区域的几何不稳定性。尽管关于复合材料屈曲的文献很多,但包括平面层合板双轴试验的研究数量有限,特别是在考虑强弯曲-扭转耦合的情况下。在这项工作中,十字形标本的兴趣区域由碳纤维增强的[45]S层压板组成,其形状和边界条件接近夹紧的方形板。利用数字图像相关技术记录的三维挠曲面数据,首次在十字形试样的中心区域观察到各向异性层合板的屈曲模式。通过屈曲模态的定向实验验证了分岔处弯扭耦合的影响,并利用屈曲模态的定向分析量化了弯矩与扭转矩的比例。验证了双轴加载区应力-应变演化的非线性与试样臂的响应无关。此外,没有先前的实验研究表明,在铺层水平应力状态引起的局部应变测量的差异。此外,本文采用强度折减法来估计双压缩层压板的实际临界应力。


Composites Science and Technology

Multimodal Data Fusion Enhanced Deep Learning Prediction of Crack Path Segmentation in CFRP Composites

Peng Zhang, Keke Tang, Guangxu Chen, Jiangfeng Li, Yan Li

doi:10.1016/j.compscitech.2024.110812

 

多模态数据融合增强CFRP复合材料裂纹路径分割深度学习预测

Carbon fiber-reinforced polymer (CFRP) composites are extensively used in various engineering applications due to their superior strength-to-weight ratio and excellent mechanical properties. Predicting crack propagation paths in CFRP composites is a complex challenge due to their multiphase nature and intricate microstructural interactions. While finite element (FE) simulations possess significant capabilities for this purpose, they entail substantial computational demands and extended execution times, thereby limiting their viability in applications with high computational requirements. To address this challenge, we propose an end-to-end deep learning framework specifically for predicting crack propagation paths in two-dimensional CFRP composites. Drawing inspiration from semantic segmentation techniques, we employ EfficientNet for feature extraction, enabling the capture of hierarchical and multiscale features from both microstructure images and stress field distributions. A key aspect of our framework is the utilization of multimodal data fusion and self-attention mechanisms to effectively integrate these diverse data sources. The results demonstrate the effectiveness of our multimodal feature integration approach, producing accurate segmentations of crack path. This novel framework offers a promising approach to understanding and predicting failure mechanisms in composite materials, with significant implications for the design and maintenance of advanced composite structures.

碳纤维增强聚合物(CFRP)复合材料以其优越的强度重量比和优异的力学性能被广泛应用于各种工程领域。由于CFRP复合材料的多相特性和复杂的微观结构相互作用,预测其裂纹扩展路径是一项复杂的挑战。虽然有限元(FE)模拟在这方面具有重要的能力,但它们需要大量的计算需求和延长的执行时间,从而限制了它们在具有高计算要求的应用中的可行性。为了解决这一挑战,我们提出了一个端到端深度学习框架,专门用于预测二维CFRP复合材料的裂纹扩展路径。从语义分割技术中获得灵感,我们采用高效率网络进行特征提取,从而能够从微观结构图像和应力场分布中捕获分层和多尺度特征。我们的框架的一个关键方面是利用多模态数据融合和自关注机制来有效地集成这些不同的数据源。结果证明了多模态特征集成方法的有效性,可以产生准确的裂纹路径分割。这种新框架为理解和预测复合材料的失效机制提供了一种有希望的方法,对先进复合材料结构的设计和维护具有重要意义。


A Damage-related Adaptive Self-Consistent Clustering Analysis method with localized refinement capability for the damage problem of 3D woven composites

Siyang Wu, Licheng Guo, Zhixing Li, Junfeng Ding, Yue Zhuo

doi:10.1016/j.compscitech.2024.110814

 

三维编织复合材料损伤问题的局部细化自适应聚类分析方法

In this work, a Damage-related Adaptive Self-Consistent Clustering Analysis (DASCA) method is developed to achieve higher solving accuracy for 3D damage problems than Self-Consistent Clustering Analysis (SCA) method, which is applied to investigate the mesoscale damage behavior of 3D woven composites (3DWC). The developed clustering adaptivity framework is based on the characteristics of the damage problem, which consists of five fundamental stages: evaluation of the adaptivity conditions, selection criterion of potential damage clusters, online adaptive clustering analysis, update of the cluster database and adaptive rewind of the analysis process. In the second stage, the clusters with the highest potential to enter the damage state are identified and marked as adaptivity target clusters. In the solving process, the distribution of clusters can achieve problem-dependent dynamic adjustments, ensuring that clusters are concentrated on the regions of interest. Though the numerical examples of 3DWC, the DASCA solutions, using fewer clusters and less computational cost, exhibit higher prediction accuracy for macroscopic mechanical performance, first damage initiation moments and damage evolution process than the SCA solutions.

本文提出了一种与损伤相关的自适应自洽聚类分析(DASCA)方法,该方法比自洽聚类分析(SCA)方法具有更高的三维损伤问题求解精度,用于研究三维编织复合材料(3DWC)的中尺度损伤行为。本文提出的聚类自适应框架主要包括五个基本阶段:自适应条件的评估、潜在损伤聚类的选择准则、在线自适应聚类分析、聚类数据库的更新和分析过程的自适应倒带。在第二阶段,识别出最有可能进入破坏状态的集群,并将其标记为自适应目标集群。在求解过程中,簇的分布可以实现与问题相关的动态调整,保证簇集中在感兴趣的区域。通过对3DWC的数值算例分析发现,与SCA相比,DASCA方法在宏观力学性能、首次损伤起爆矩和损伤演化过程的预测精度更高,且簇数更少,计算成本更低。




来源:复合材料力学仿真Composites FEM
ACTMechanicalSystemInspireDeform断裂复合材料非线性电子油气裂纹电场理论材料储能多尺度仿生试验
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-11-21
最近编辑:4天前
Tansu
签名征集中
获赞 3粉丝 0文章 690课程 0
点赞
收藏
作者推荐

【新文速递】2024年8月18日复合材料SCI期刊最新文章

今日更新:Composite Structures 1 篇,Composites Part A: Applied Science and Manufacturing 1 篇,Composites Science and Technology 2 篇Composite Structures3D winding path modeling method with fiber overlap effectShuo Li, Zhuo Meng, Richen Hong, Yize Sundoi:10.1016/j.compstruct.2024.118488考虑纤维重叠效应的三维缠绕路径建模方法The fibers will repeatedly cross and stack on the liner during the continuous winding process, which poses a challenge in creating accurate local and global structure models. To address the issue, a 3D winding path modeling method is proposed to simulate the fiber overlap effect. First, the initial path is offset equidistantly along the direction of width and thickness to construct a 3D fiber model. Then, by calculating the overlap thickness, the overlapped fibers are raised to the corresponding overlap thickness to eliminate interference in the 3D fiber model. Finally, a 3D winding path with the fiber overlap effect is obtained by solving the suspended points before and after the overlapping area to describe the behavior of fibers separating from the liner surface under tension. The proposed method is applied to various winding patterns and liner shapes, and the results show that the established 3D winding path can accurately simulate the fiber overlap effect and correspond with the actual local and global winding structures.在连续缠绕过程中,纤维会反复交叉和堆叠在内衬上,这对创建准确的局部和全局结构模型提出了挑战。为了解决这一问题,提出了一种三维缠绕路径建模方法来模拟纤维重叠效应。首先,将初始路径沿宽度和厚度方向等距偏移,构建三维纤维模型;然后,通过计算重叠厚度,将重叠的纤维提升到相应的重叠厚度,消除三维纤维模型中的干扰。最后,通过求解重叠区域前后的悬浮点,得到具有纤维重叠效应的三维缠绕路径,以描述纤维在张力作用下与衬垫表面分离的行为。将该方法应用于各种缠绕方式和线材形状,结果表明,所建立的三维缠绕路径能够准确模拟纤维重叠效应,并与实际的局部和全局缠绕结构相对应。Composites Part A: Applied Science and ManufacturingUltrafast response and highly sensitivity of flexible acoustic sensor based on the controllable hierarchical Nano/Micro-StructureFan Chang, Xu Zhu, Zhong Lian, Jiahao Song, Xiao Ouyang, Ning Ma, Xueqiang Liu, Xinyue Zhangdoi:10.1016/j.compositesa.2024.108415基于可控层次纳米/微结构的柔性声传感器的超快响应和高灵敏度Flexible and highly sensitive acoustic sensors have become more and more essential for successful military detection. It puts a big barrier for the large-scale production and application. In this work, we have a low-cost and facile approach constructing a hierarchical nano/micro-structure based on the nanosheets of MXene (Ti3C2Tx) and the gold micro-wrinkles on polydimethylsiloxane (PDMS) surface. The period micro-wrinkles can be easily controlled by the thickness of gold layer and the pre-strain on PDMS through the uniaxial stretching method. The formed hierarchical structure can endow the high sensitivity (15 kPa−1 when applied pressure less than 50 Pa), an ultra-fast response time of 15 ms, a minimum detection of 2 Pa, which can achieve the precise acoustic detection of low frequency. Moreover, the flexible sensor also can detect the large pressure about 1000 Pa, and show stable repeatability over 1500 cycles at 400 Pa.柔性和高灵敏度的声传感器已成为成功的军事探测的必要条件。这对大规模生产和应用造成了很大的障碍。在这项工作中,我们利用MXene (Ti3C2Tx)纳米片和聚二甲基硅氧烷(PDMS)表面的金微皱,构建了一种低成本、简便的层次化纳米/微结构。通过单轴拉伸的方法,可以很容易地通过金层厚度和PDMS上的预应变来控制周期微皱。所形成的层次化结构具有高灵敏度(施加压力小于50 Pa时为15 kPa−1)、超快响应时间为15 ms、最小探测2 Pa,可实现低频的精确声学探测。此外,柔性传感器还可以检测约1000 Pa的大压力,并在400 Pa下表现出超过1500次的稳定重复性。Composites Science and TechnologySimultaneous enhancement of axial/transverse compressive strength of aramid fibers by the construction of branched multi-hydrogen bonding sitesXueyong Deng, Wen Zhai, Chunlin Fan, Longbo Luo, Xiangyang Liudoi:10.1016/j.compscitech.2024.110797 支化多氢键位点的构建同时增强芳纶纤维的轴/横向抗压强度The terrible compressive strength is a prominent issue that restricts the broad application of organic fibers in multi-dimensional stress scenarios. Traditional strategies focus on enhancing the axial compressive performance of fibers, simultaneously improving the axial and transverse compressive properties of fibers still poses significant challenges. Inspired by the octopus's tentacles that can conduct stress in multiple directions, a novel strategy by constructing branched multi-hydrogen bonding sites structure in aramid fiber was conducted to solve the problem. The branched multi-hydrogen bonding sites constructed on nano-silica (SiO2-B) offer excellent dispersibility within the poly(p-phenylene-benzimidazole-terephthalamide) (PBIA) matrix. Composite fibers (PBIA-SiO2-B) co-mixed with SiO2-B and PBIA were prepared using a solution spinning technique. The results of Fourier-transform infrared spectroscopy (FTIR) and dynamic mechanical analysis (DMA) reveal that the introduction of SiO2-B significantly enhances the intermolecular interactions within the composite fibers, and this enhancement mechanism has been elaborately elucidated through molecular simulations. Furthermore, finite element simulations confirmed that the incorporation of branched structure exhibits enhanced stress-bearing capabilities under multi-directional stress and offers outstanding support when subjected to transverse compressive stress compared to linear molecular chains. Hence, compressive property testing revealed that the PBIA-SiO2-B composite fibers achieved axial compressive strengths and transverse compressive strengths of 714.3 MPa and 305.8 MPa, respectively, representing increases of 68.8% and 26.8% over pure PBIA fibers. Moreover, with the enhancement of transverse compressive strength, the Young’s modulus and interfacial shear strength of PBIA-SiO2-B fibers were also increased by 7.1% and 20.9%, respectively.抗压强度差是制约有机纤维在多维应力环境下广泛应用的突出问题。传统的策略侧重于提高纤维的轴向抗压性能,同时提高纤维的轴向和横向抗压性能仍然存在重大挑战。受章鱼触手可向多个方向传导应力的启发,在芳纶纤维中构建支链多氢键位点结构来解决这一问题。在纳米二氧化硅(SiO2-B)上构建的支链多氢键位点在聚(对苯-苯并咪唑-对苯二甲酸)(PBIA)基体中具有优异的分散性。采用溶液纺丝技术制备了与SiO2-B和PBIA共混的PBIA-SiO2-B复合纤维。傅里叶变换红外光谱(FTIR)和动态力学分析(DMA)结果表明,SiO2-B的引入显著增强了复合纤维内部的分子间相互作用,并通过分子模拟详细阐明了这种增强机理。此外,有限元模拟证实,与线性分子链相比,分支结构的结合在多向应力下表现出更强的应力承受能力,并且在承受横向压应力时提供出色的支撑。因此,抗压性能测试表明,PBIA- sio2 - b复合纤维的轴向抗压强度和横向抗压强度分别为714.3 MPa和305.8 MPa,比纯PBIA纤维提高了68.8%和26.8%。此外,随着横向抗压强度的提高,PBIA-SiO2-B纤维的杨氏模量和界面抗剪强度也分别提高了7.1%和20.9%。Study on interface toughening mechanism based on modified PBO fiber for CFRP/ plastic honeycomb sandwich structureHaotian Zheng, Jicai Liang, Yi Li, Ce Liangdoi:10.1016/j.compscitech.2024.110817 基于改性PBO纤维的CFRP/塑料蜂窝夹层结构界面增韧机理研究CFRP (carbon fiber reinforced composites)/honeycomb sandwich structures are widely used in aerospace, automotive, and high-speed rail industries due to their excellent mechanical properties and lightweight characteristics. This study investigates the impact of three designed toughened interfaces on the three-point bending performance of honeycomb structures. The results show that introducing a multiscale toughened interface made of poly(p-phenylene benzobisoxazole) (PBO) fibers grafted with polydopamine (PDA) and multi-walled carbon nanotubes (CNT) increases the peak load and post-peak load of the sandwich structure by 49.7 % and 51.9 %, respectively, and the absorbed energy by 92.4 %. This toughened interface adjusts the stress relationship between the panel, interface, and honeycomb, altering the deformation process and crack propagation mode of the sandwich structure. The micro-nano fibers form fiber bridging at the interface, changing the crack extension mode between the interfaces, transforming the delamination from a single debonding to the combined action of plate core debonding and honeycomb core buckling. Additionally, experimental results show that PBO fibers treated with PDA and CNT exhibit significantly improved surface roughness, Surface area per unit mass, wettability, and tensile strength, which delay and prevent crack propagation at the interface, effectively reducing panel debonding at the bonded joints.CFRP(碳纤维增强复合材料)/蜂窝夹层结构以其优异的力学性能和轻量化等特点,广泛应用于航空航天、汽车、高铁等行业。研究了设计的三种增韧界面对蜂窝结构三点弯曲性能的影响。结果表明,引入聚对苯并二苯并异恶唑(PBO)纤维接枝聚多巴胺(PDA)和多壁碳纳米管(CNT)的多尺度增韧界面,使夹层结构的峰后负荷和峰后负荷分别提高了49.7%和51.9%,吸收能量提高了92.4%。这种增韧的界面调整了面板、界面和蜂窝之间的应力关系,改变了夹层结构的变形过程和裂纹扩展模式。微纳纤维在界面处形成纤维桥接,改变了界面间的裂纹扩展方式,使分层由单一的脱粘转变为板芯脱粘和蜂窝芯屈曲的共同作用。此外,实验结果表明,经PDA和CNT处理的PBO纤维表面粗糙度、单位质量表面积、润湿性和抗拉强度显著提高,从而延缓和阻止了界面处的裂纹扩展,有效地减少了粘结接缝处的面板脱粘。来源:复合材料力学仿真Composites FEM

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈