今日更新:Composite Structures 1 篇,Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 1 篇,Composites Science and Technology 2 篇
A size-dependent nonlinear analysis of perovskite solar panels with FG-CNTR-TPMS substrates
Nam V. Nguyen, Kim Q. Tran, Nicholas Fantuzzi, H. Nguyen-Xuan
doi:10.1016/j.compstruct.2024.118548
具有fg - cnr - tpms衬底的钙钛矿太阳能电池板的尺寸相关非线性分析
Perovskite Solar Cells (PSCs) have achieved substantial developments in transforming solar energy into electrical power in recent years, resulting in their widespread application in various interdisciplinary engineering applications. However, the ongoing challenge lies in developing effective mathematical computations to analyze their mechanical behavior under various working scenarios, particularly for nonlinear problems. Being together with the fast growth of new conjugated materials aimed at improving the power conversion efficiencies (PCEs) of solar cells, understanding their mechanical features is crucial for achieving optimal and reliable designs. In this study, we focus on (1) presenting a newly designed PSC structure based on nature-inspired triply periodic minimal surface (TPMS) architectures with agglomerated CNTs reinforcement and (2) investigating a NURBS-based isogeometric approach to determine nonlinear bending and free vibration responses with size-dependent effects. The PSC structures are modeled as a multi-layered microplate, including thin solar cells and a functionally graded carbon nanotube-reinforced TPMS (FG-CNTR-TPMS) substrate layer. After deriving FG-CNTR-TPMS architectures, the strong and weak forms of the geometrically nonlinear behavior of microplates under static bending and free vibration with large amplitude conditions are established. The high performance and accuracy of the current approach are compared with the analytic approach and other available solutions. The obtained results demonstrated that the size effects significantly influence static deflections as well as frequencies of advanced PSC structures. In addition, the significant contribution of high-performance FG-CNTR-TPMS substrates in improving the size-dependent nonlinear performance of the original PSCs structure is discussed and elucidated.
近年来,钙钛矿太阳能电池(PSCs)在将太阳能转化为电能方面取得了长足的发展,在各种跨学科工程应用中得到了广泛的应用。然而,目前的挑战在于开发有效的数学计算来分析它们在各种工作情况下的力学行为,特别是非线性问题。随着旨在提高太阳能电池功率转换效率(pce)的新型共轭材料的快速发展,了解其机械特性对于实现最佳和可靠的设计至关重要。在本研究中,我们的重点是(1)提出了一种基于自然启发的三周期最小表面(TPMS)结构的新设计PSC结构,并带有聚集体碳纳米管增强;(2)研究了一种基于nurbs的等几何方法,以确定具有尺寸依赖效应的非线性弯曲和自由振动响应。PSC结构被建模为多层微板,包括薄太阳能电池和功能梯度的碳纳米管增强TPMS (fg - cnr -TPMS)衬底层。在推导fg - cnr - tpms结构的基础上,建立了微板在静态弯曲和大振幅自由振动条件下几何非线性行为的强弱形式。并与解析法和其他现有的求解方法进行了比较。结果表明,尺寸效应对高级PSC结构的静挠度和频率有显著影响。此外,高性能fg - cnr - tpms衬底在改善原psc结构的尺寸相关非线性性能方面的重要贡献进行了讨论和阐明。
Cellulose fibre foam templated porous epoxy composites: Wetting matters
Veronika Biegler, Philip Verdross, Robert T. Woodward, Alexander Bismarck
doi:10.1016/j.compositesa.2024.108461
纤维素纤维泡沫模板多孔环氧复合材料:润湿物质
Cellulose foams were used to produce porous epoxy-composites. The influence of fibre wetting by the resins on foam morphology and resulting compression properties was investigated. Impregnated foam morphology determined the composite structures and their mechanical properties. Fibre preforms of various densities (40–80 kg·m−3) were prepared by frothing surfactant stabilised fibre suspensions. The preforms, exhibiting compressive strengths of 0.02 MPa, were impregnated with three different resins (a lignin-based resin BLER/MA, and two commercial formulations, A/A and A/XB). Depending on the formation of closed- or open-cell structures in the cured foam composites, compressive strengths of up to 2 MPa (BLER/MA), 33 MPa (A/A), or 23 MPa (A/XB), and compressive moduli of up to 47 MPa (BLER/MA), 468 MPa (A/A), or 379 MPa (A/XB) were obtained. The surface area, fibre coverage homogeneity, and composite morphology were investigated in relation to wetting. A tool kit for fibre foam templated porous composite design is provided.
采用纤维素泡沫制备多孔环氧树脂复合材料。研究了树脂润湿纤维对泡沫形态和压缩性能的影响。浸渍泡沫形态决定了复合材料的结构和力学性能。用表面活性剂稳定的纤维悬浮液泡沫法制备了不同密度(40-80 kg·m−3)的纤维预制体。用三种不同的树脂(木质素基树脂BLER/MA和两种商业配方a / a和a /XB)浸渍预制体,其抗压强度为0.02 MPa。根据固化泡沫复合材料中闭孔或开孔结构的形成,抗压强度可达2 MPa (BLER/MA)、33 MPa (A/A)或23 MPa (A/XB),压缩模量可达47 MPa (BLER/MA)、468 MPa (A/A)或379 MPa (A/XB)。研究了表面面积、纤维覆盖均匀性和复合材料形态与润湿的关系。提供了一种用于泡沫纤维模板多孔复合材料设计的工具箱。
The magnesium-doped CSH/BCP promotes alveolar bone regeneration by mediating M2 macrophage polarization via miR-21-5p/Smad2 axis
Jing Zhou, Su Sun, Jia Xu, Tingting Yan, Yan He, Lingpeng Zhang, Chaofeng Liu, Yonghui Zhang, Yan Liu, Qingsong Ye
doi:10.1016/j.compositesb.2024.111811
镁掺杂CSH/BCP通过miR-21-5p/Smad2轴介导M2巨噬细胞极化促进牙槽骨再生
The repair of alveolar bone defects is a complex biological process that involves the interplay between implant materials, bone marrow mesenchymal stem cells (BMSCs), and the immune cells present in the surrounding area. Moreover, the polarization of macrophages induced by implant materials has been shown to play a crucial role in regulating bone regeneration. Recent studies have discovered that M2 macrophages promote the osteogenic differentiation of BMSCs by activating the TGF-β/BMP signaling pathway. However, the molecular mechanisms underlying the regulation of bone regeneration in BMSCs by macrophages remain unclear. Our in vivo study demonstrated that a 10% magnesium (Mg2+)-doped calcium sulfate hemihydrate -biphasic calcium phosphate (CSH/BCP) composite ceramic material was effective in repairing alveolar bone defects in rabbits. In our in vitro study, we observed that this ceramic material could induce M2 macrophage polarization and reduce inflammation. Moreover, the conditioned media obtained from M2 macrophages promoted the osteogenic differentiation of BMSCs. Additionally, our research showed that overexpression of miR-21-5p inhibited M2 macrophage polarization and reduced the osteogenic differentiation capacity of BMSCs. Co-overexpression of miR-21-5p and Smad2 in macrophages partially reversed the effects of miR-21-5p on the osteogenic differentiation of BMSCs and macrophage polarization. These findings suggested that Mg2+-doped CSH/BCP composite ceramic materials could enhance M2 macrophage polarization through the miR-21-5p/Smad2 axis, and the microenvironment of M2 macrophages could further promote the osteogenic differentiation of BMSCs. The findings presented in this work offer valuable insights into the molecular mechanisms that regulate bone regeneration in BMSCs and the role of macrophages in this process.
牙槽骨缺损的修复是一个复杂的生物学过程,涉及植入材料、骨髓间充质干细胞(BMSCs)和周围免疫细胞之间的相互作用。此外,种植材料诱导的巨噬细胞极化在调节骨再生中起着至关重要的作用。近期研究发现M2巨噬细胞通过激活TGF-β/BMP信号通路促进BMSCs的成骨分化。然而,巨噬细胞调控骨髓间充质干细胞骨再生的分子机制尚不清楚。我们的体内研究表明,10%镁(Mg2+)掺杂硫酸钙半水-双相磷酸钙(CSH/BCP)复合陶瓷材料可有效修复家兔牙槽骨缺损。在我们的体外研究中,我们观察到这种陶瓷材料可以诱导M2巨噬细胞极化,减轻炎症。此外,从M2巨噬细胞中获得的条件培养基促进了骨髓间充质干细胞的成骨分化。此外,我们的研究表明,过表达miR-21-5p抑制M2巨噬细胞极化,降低BMSCs的成骨分化能力。巨噬细胞中miR-21-5p和Smad2的共过表达部分逆转了miR-21-5p对BMSCs成骨分化和巨噬细胞极化的影响。这些结果表明,Mg2+掺杂CSH/BCP复合陶瓷材料可以通过miR-21-5p/Smad2轴增强M2巨噬细胞极化,M2巨噬细胞的微环境可以进一步促进BMSCs的成骨分化。本研究的发现为骨髓间充质干细胞骨再生调控的分子机制以及巨噬细胞在这一过程中的作用提供了有价值的见解。
Bioinspired 3D printed metamaterial for wideband microwave absorption and aerodynamic efficiency
Chaoqun Ge, Huaiyu Dong, Zonghan Li, Chen Yu, Zhichen Wang, Yingjian Sun, Yixing Huang, Tian Zhao, Ying Li, Liuying Wang
doi:10.1016/j.compscitech.2024.110846
生物启发的3D打印超材料,用于宽带微波吸收和空气动力学效率
To further decrease the mass and thickness of multifunctional wideband microwave absorption metamaterials (MAMs), this study applies photonic crystal principles to the field of microwave absorption. Drawing inspiration from the structural coloration regulation of Morpho Menelaus scales, a novel integrated bioinspired MAM named MM is designed. MM possesses low drag coefficient, hydrophobicity, mechanical load-bearing capacity, and wideband radar stealth functionality. Utilizing PA6@CF filaments and material extrusion 3D printing technology, mechanical test specimens and MM specimens optimized through particle swarm optimization (PSO) are rapidly fabricated at low cost. Reflectivity tests at normal incidence reveal that MM (with a thickness of 8 mm) achieves an effective absorption bandwidth (EAB) of 33.4 GHz within the 2–40 GHz frequency range. Under transverse magnetic polarization and 60° oblique incidence conditions, MM demonstrates a coverage rate of 98.5 % for EAB. Furthermore, three-point bending tests demonstrate MM's excellent deformation capabilities (up to 50 mm) and mechanical load-bearing performance (bending strength reaching 78 MPa), laying the groundwork for its application on complex surfaces. Lastly, targeting the application of microwave absorption metamaterials on high-speed moving objects, comparative analysis of MM and five typical MAMs reveals that MM exhibits the lowest drag coefficient (Cd = 0.132). In summary, this study offers a straightforward and replicable method for designing, optimizing, fabricating, and evaluating MAMs, while suggesting aerodynamic performance as a novel metric for assessing their multifunctional capabilities.
为了进一步降低多功能宽带微波吸收超材料(MAMs)的质量和厚度,本研究将光子晶体原理应用于微波吸收领域。从墨涅劳斯大Morpho Menelaus鳞片的结构色彩调节中获得灵感,设计了一种新型的集成生物MAM,名为MM。MM具有低阻力系数、疏水性、机械承载能力和宽带雷达隐身功能。利用PA6@CF长丝和材料挤压3D打印技术,通过粒子群优化(PSO)快速制作机械试件和MM试件,成本低。正入射反射率测试表明,MM(厚度为8 MM)在2-40 GHz频率范围内的有效吸收带宽(EAB)为33.4 GHz。在横磁极化和60°斜入射条件下,MM对EAB的覆盖率为98.5%。此外,三点弯曲试验表明,MM具有优异的变形能力(高达50 MM)和机械承载性能(弯曲强度达到78 MPa),为其在复杂表面上的应用奠定了基础。最后,针对微波吸收超材料在高速运动物体上的应用,MM与5种典型MAMs的对比分析表明MM具有最低的阻力系数(Cd = 0.132)。总之,本研究为mam的设计、优化、制造和评估提供了一种简单、可复 制的方法,同时建议将空气动力学性能作为评估其多功能能力的新指标。
Revealing the Nanoscale Reinforcing Mechanism: How Topological Structure of Carbon Black Clusters Influence the Mechanics of Rubber
Chenchen Tian, Xinyang Liu, Jingjie Kou, Chao Wang, Lin Xu, Nanying Ning, Chao Lu, Ming Tian
doi:10.1016/j.compscitech.2024.110847
揭示纳米级增强机制:炭黑团簇的拓扑结构如何影响橡胶的力学
The mechanical reinforcement of rubber by carbon black (CB) depends strongly on its the size and topography of CB clusters. However, the underlying mechanisms remain largely unexplored. This study uses atomic force microscopy (AFM) to probe interfacial properties at the nanoscale to elucidate the influence of the CB topological structure on macroscopic mechanical properties. A substantial amount of high-modulus bound rubber is found inside the CB aggregates, particularly in highly branched ones. This phenomenon plays a critical role in reinforcement, as corroborated by quantitative AFM nanomechanics, chain segment motion results and theoretical calculations. A quantitative analysis of the filler network reveals that the branched chain structure effectively reduces the packing spacing and improves the stress transfer efficiency.
炭黑对橡胶的机械增强在很大程度上取决于炭黑团簇的大小和形貌。然而,潜在的机制在很大程度上仍未被探索。本研究利用原子力显微镜(AFM)在纳米尺度上探测界面性能,以阐明CB拓扑结构对宏观力学性能的影响。大量的高模量结合橡胶在炭黑聚集体中被发现,特别是在高度分支的聚集体中。定量AFM纳米力学、链段运动结果和理论计算均证实了这一现象在强化过程中起着至关重要的作用。对填料网络的定量分析表明,支链结构有效地减小了填料间距,提高了应力传递效率。