首页/文章/ 详情

【机器学习】复合材料力学SCI最新文章案例复现

5天前浏览179

人工智能与复合材料技术融合的背景下,复合材料的研究和应用正迅速发展,创新解决方案层出不穷。从复合材料性能的精确预测到复杂材料结构的智能设计,从数据驱动的材料结构优化到多尺度分析,人工智能技术正以其强大的数据处理能力和模式识别优势,推动复合材料领域的技术进步。据最新研究动态,目前在复合材料领域的机器学习应用主要集中在以下几个方面:

1.材料设计优化:机器学习可以用于预测复合材料的微观结构和宏观性能,帮助设计出更轻、更强、更耐用的材料。

2.制造过程控制:机器学习可以用于预测和控制制造缺陷,优化生产参数,提高生产效率。

3.性能预测与模拟:通过对复合材料的力学性能、热性能等进行模拟和预测,机器学习可以帮助研究人员和工程师更好地理解材料在不同条件下的行为。

4.缺陷检测:利用图像识别和模式识别技术,机器学习可以自动识别复合材料中的微小缺陷,提高检测的准确性和效率。

5.寿命预测与健康管理:机器学习可以分析复合材料在实际使用中的性能退化数据,预测其剩余使用寿命,为维护和更换提供决策支持。

6.数据驱动的材料发现:通过分析大量的实验和模拟数据,机器学习有助于发现新的复合材料配方和结构,加速新材料的研发过程。

7.多尺度建模:机器学习可以辅助进行多尺度建模,从原子尺度到宏观尺度,为复合材料的性能预测提供更全面的视角。

来源:复合材料力学仿真Composites FEM
Abaqus振动断裂复合材料非线性二次开发通用航空航天船舶汽车MATLABpythonUM裂纹理论材料多尺度控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-11-21
最近编辑:5天前
Tansu
签名征集中
获赞 4粉丝 0文章 690课程 0
点赞
收藏
作者推荐

【新文速递】2024年8月3日复合材料SCI期刊最新文章

今日更新:Composite Structures 1 篇,Composites Science and Technology 1 篇Composite StructuresMachine learning-accelerated inverse design of programmable bi-functional metamaterialsBeicheng Lin, Fucong Lu, Chuanbiao Zhang, Tinghui Wei, Weijia Li, Yilin Zhudoi:10.1016/j.compstruct.2024.118445机器学习加速可编程双功能超材料的逆向设计Bi-functional metamaterials with programmable coefficients of thermal expansion (CTEs) and Poisson’s ratios (PRs) have garnered significant attention among researchers due to the ability to manifest desired deformations under thermal and mechanical loads. Nevertheless, a current challenge lies in efficiently achieving the inverse design of these metamaterials to meet diverse application requirements. This paper presents a machine learning (ML) model that can establish a logical mapping relationship between geometric/material parameters and mechanical properties, and it is applied to the inverse design of bi-functional metamaterials with desired CTEs and PRs. Furthermore, the inverse design capability of the ML model was validated by the finite element analysis and experimental test. The results demonstrate that the geometric models obtained from the inverse prediction can effectively exhibit the desired deformation behavior under thermal and mechanical loads. And the ML model proves to be a valuable tool, offering effective guidance for the design of bi-functional metamaterials with specific CTEs and PRs.具有可编程热膨胀系数(CTEs)和泊松比(pr)的双功能超材料由于能够在热载荷和机械载荷下表现出所需的变形而引起了研究人员的极大关注。然而,当前的挑战在于如何有效地实现这些超材料的逆设计,以满足不同的应用需求。本文提出了一种机器学习(ML)模型,该模型可以建立几何/材料参数与力学性能之间的逻辑映射关系,并将其应用于具有期望cte和pr的双功能超材料的反设计。通过有限元分析和实验验证了该模型的反设计能力。结果表明,由逆预测得到的几何模型能有效地表现出在热载荷和机械载荷下所需的变形行为。ML模型为设计具有特定cte和pr的双功能超材料提供了有效的指导。Composites Science and TechnologyNitsche’s Method Enhanced Isogeometric Homogenization of Unidirectional Composites with Cylindrically Orthotropic Carbon/Graphite FibersXiaoxiao Du, Qiang Chen, George Chatzigeorgiou, Fodil Meraghni, Gang Zhao, Xuefeng Chendoi:10.1016/j.compscitech.2024.110787 Nitsche方法增强了圆柱正交异性碳/石墨纤维单向复合材料的等几何均匀化An isogeometric homogenization (IGH) technique is constructed for the homogenization and localization of unidirectional composites with radially or circumferentially orthotropic carbon/graphite fibers. The proposed theory employs multiple non-conforming Non-Uniform Rational B-Splines (NURBS) patches to depict repeating unit cells (RUCs) representative of composite microstructures. Displacements are formulated using a two-scale expansion that integrates macroscopic and microscopic contributions, with the latter addressed through the isogeometric analysis technique. Nitsche’s method is utilized to apply the interfacial traction and displacement continuity and periodicity conditions. The capability and accuracy of the IGH theory were validated upon comparison with the elasticity solutions that take into account explicitly fiber morphologies, along with classical micromechanics solutions based on equivalent fiber moduli. A comparative analysis with conventional finite-element techniques showcases the developed theory’s ability to accurately replicate the singular stress field at the fiber center and to capture smooth stress distributions where significant stress gradients are encountered.提出了一种等几何均质(IGH)技术,用于径向或周向正交异性碳/石墨纤维单向复合材料的均质和局部化。提出的理论采用多个不一致的非均匀有理b样条(NURBS)斑块来描述复合微观结构的重复单元(RUCs)代表。位移采用双尺度扩展,整合了宏观和微观贡献,后者通过等几何分析技术解决。采用Nitsche的方法来应用界面牵引和位移的连续性和周期性条件。通过与明确考虑纤维形态的弹性解以及基于等效纤维模量的经典微观力学解进行比较,验证了IGH理论的能力和准确性。与传统有限元技术的对比分析表明,该理论能够准确地复 制光纤中心的单一应力场,并在遇到显著应力梯度时捕获平滑的应力分布。来源:复合材料力学仿真Composites FEM

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈